IBM SPSS Statistics 中文网站 > 使用技巧 > 应用SPSS列联表分析,探索变量间的相关关系(上)

应用SPSS列联表分析,探索变量间的相关关系(上)

发布时间:2020/12/28 11:08:05

IBM SPSS Statistics的列联表分析,也称为交叉表分析,用于分析两个或以上分组变量的相关关系,在分析影响满意度的因素、药物有效性等方面都有很好的应用。

本文将以较为简单的二乘二列联表卡方检验为例,介绍一下IBM SPSS Statistics的列联表分析功能

一、打开数据文件

首先,我们打开如图1所示的一组数据,包含了性别、地区与满意度的数据,用以研究性别与满意度的相关关系。

由于当前数据中的满意度变量包含了非常不满意、比较不满意、一般、比较满意、非常满意五个变量值,为了构建二乘二列联表,需要转换一下数据。

图1:示例数据

二、构建二乘二表格

如图2所示,打开IBM SPSS Statistics的转换菜单,并选择其中的“重新编码为相同的变量”选项。


图2:重新编码为相同变量

接着,如图3所示,将满意度变量添加到右侧的字符串变量中,并单击下方的“旧值与新值”进行变量的重新编码。

图3:选择满意度变量

如图4所示,在匹配旧值与新值的操作中,我们需依次将非常不满意、比较不满意、一般匹配为不满意;将较满意、非常满意匹配为满意。然后,单击继续。

图4:匹配满意度变量的新旧值

如图5所示,可以看到,数据中的满意度变量已重新编码为“满意”与“不满意”两个变量值,可与性别组成二乘二列联表。

图5:完成满意度的重新编码

三、应用二乘二列联表分析

完成数据的转换后,就可以打开IBM SPSS Statistics分析中的“交叉表”选项。

图6:交叉表分析

在交叉表的设置面板中,包含了变量选择面板以及分析选项功能。

分别将变量添加于列联表中的行与列,即可构建列联表。除了构建一层列联表外,我们还可以通过层选项构建多层的列联表,分析更为复杂的相关关系。

完成变量的选择后,即可使用右侧的分析选项探究变量间的相关关系。在下一节中,我们会使用转换好的数据演示功能。

图7:交叉表设置

本文中,我们已经做好了数据的转换,并简单了解了列联表的变量选择面板。下一节,将会通过实例进一步探究变量间的相关关系。如需获取下一节内容,欢迎访问IBM SPSS Statistics中文网站

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣