IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > 应用SPSS列联表分析,探索变量间的相关关系(上)

应用SPSS列联表分析,探索变量间的相关关系(上)

发布时间:2020/12/28

IBM SPSS Statistics的列联表分析,也称为交叉表分析,用于分析两个或以上分组变量的相关关系,在分析影响满意度的因素、药物有效性等方面都有很好的应用。

本文将以较为简单的二乘二列联表卡方检验为例,介绍一下IBM SPSS Statistics的列联表分析功能

一、打开数据文件

首先,我们打开如图1所示的一组数据,包含了性别、地区与满意度的数据,用以研究性别与满意度的相关关系。

由于当前数据中的满意度变量包含了非常不满意、比较不满意、一般、比较满意、非常满意五个变量值,为了构建二乘二列联表,需要转换一下数据。

图1:示例数据

二、构建二乘二表格

如图2所示,打开IBM SPSS Statistics的转换菜单,并选择其中的“重新编码为相同的变量”选项。


图2:重新编码为相同变量

接着,如图3所示,将满意度变量添加到右侧的字符串变量中,并单击下方的“旧值与新值”进行变量的重新编码。

图3:选择满意度变量

如图4所示,在匹配旧值与新值的操作中,我们需依次将非常不满意、比较不满意、一般匹配为不满意;将较满意、非常满意匹配为满意。然后,单击继续。

图4:匹配满意度变量的新旧值

如图5所示,可以看到,数据中的满意度变量已重新编码为“满意”与“不满意”两个变量值,可与性别组成二乘二列联表。

图5:完成满意度的重新编码

三、应用二乘二列联表分析

完成数据的转换后,就可以打开IBM SPSS Statistics分析中的“交叉表”选项。

图6:交叉表分析

在交叉表的设置面板中,包含了变量选择面板以及分析选项功能。

分别将变量添加于列联表中的行与列,即可构建列联表。除了构建一层列联表外,我们还可以通过层选项构建多层的列联表,分析更为复杂的相关关系。

完成变量的选择后,即可使用右侧的分析选项探究变量间的相关关系。在下一节中,我们会使用转换好的数据演示功能。

图7:交叉表设置

本文中,我们已经做好了数据的转换,并简单了解了列联表的变量选择面板。下一节,将会通过实例进一步探究变量间的相关关系。如需获取下一节内容,欢迎访问IBM SPSS Statistics中文网站

作者:泽洋

标签:SPSS数据分析软件

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07
SPSS数据合并之如何进行变量合并
在存在多个数据源的情况下,经常会使用到IBM SPSS Statistics的数据合并功能,对多个数据源的数据进行合并。
2020-11-13
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09