IBM SPSS Statistics 中文网站 > 使用技巧 > 应用SPSS探索性分析,检验数据的正态性分布

应用SPSS探索性分析,检验数据的正态性分布

发布时间:2020/12/25 18:34:35

IBM SPSS Statistics探索性分析提供了数据过滤、离群值识别、假设检验等分析功能。在《应用SPSS探索性分析,快速检查数据异常值》一文中,我们应用探索性分析检查到数据中存在着极端值的情况。本节,将会继续应用检验功能检查数据的正态分布情况。

一、图分析功能简介

如图1所示,IBM SPSS Statistics探索性分析中的图功能包含了图表的可视化以及正态性检验,简单介绍如下:

1.箱图,以最大值、最小值、中位数和两个四分位数描述数据,可检查数据的对称性与分散程度。

2.描述性,包含茎叶图和直方图。

3.带检验的正态图,包含正态性检验以及正态Q-Q图。

4.含莱文检验的分布-水平图,控制分布-水平图的数据转换。

接下来,我们将简单应用以上功能到本文的例子中,用以检验不同性别的客单价数据是否符合正态分布。

图1:图分析功能

二、应用图分析功能

1、设置图分析选项

如图2所示,分别勾选“直方图”以及“含检验的正态图”两个选项,然后单击“继续”,获取分析结果。

图2:图分析选项

2、解读图分析结果

首先,我们来看一下正态性检验的数值。如图3所示,可以看到,男性客单价在两种检验中均低于0.05的置信度,因此可以拒绝其正态分布的假设。

而女性客单价在柯尔莫哥洛夫-斯米诺夫检验(K-S检验)中高于0.05的置信度,在夏皮洛-威尔克检验(S-W检验)中低于0.05的置信度,因本例女性只有49个样本,属于小样本,要采用S-W检验结果,即拒绝其正态分布的假设。

图3:正态性检验

除了使用正态性检验数据,我们还可以通过正态Q-Q图,简单看一下不同性别客单价的实测值与期望正态值的关系。当数值分布于正态曲线上,表明变量符合正态分布。

如图4所示,可以看到,男性的客单价偏离正态曲线,不符合正态分布。

图4:男性客单价正态Q-Q图

如图5所示,女性的数值虽然都接近于正态曲线,但也有一些离散的值,如果样本量大一点,可能效果会更好一点。

图5:女性客单价正态Q-Q图

然后,如图5所示,选中已添加的地区变量,在新名词处输入重新编码后的变量名称:地区编码,并将其添加为新名称。

图6:女性客单价直方图

从以上结果可以看到,男性与女性的客单价均不符合正态分布的假设,这可能与样本量较少有关。以上就是IBM SPSS Statistics探索性分析的应用介绍,您学会了吗?

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

咨询热线

在线咨询

限时折扣