SPSS > 使用技巧 > 应用SPSS探索性分析,快速检查数据异常值

应用SPSS探索性分析,快速检查数据异常值

发布时间:2020-12-23 16: 50: 30

IBM SPSS Statistics探索性分析是描述统计中的一种分析方法,提供了数据过滤、离群值识别、假设检验等分析功能。

探索性分析中比较常用的功能是,通过数据过滤的功能,如分析数据中的极值、平均值、方差等,识别数据中的异常值;或使用检验的方法,判断后续使用的统计分析方法是否合适等,比如数据的正态分布假设是否成立。

一、示例数据

本文中,我们将会分析一组包含性别、客单价的数据。

通过探索性分析,查看数据中是否存在一些异常值,以及检验不同性别的客单价数据是否符合正态分布。

为什么要检验数据是否正态分布?这是因为在一些相关性分析(或其他分析)中,是以数据正态分布为前提进行统计分析的,如果数据不满足正态分布的假设,分析得出的结果就会不准确。

图1:示例数据

二、应用探索性分析

如图2所示,我们先打开IBM SPSS Statistics的探索分析选项(分析-描述统计-探索),然后再逐步演示操作。

图2:探索性分析

1、选择变量

如图3所示,探索分析设置面板中的选项含义如下:

1. 因变量列表,即随自变量变化的数值,本例中选取客单价作为因变量

2. 因子列表,用于定义个案组,可选择一个或多个因子变量,本例中选取性别

3. 个案标注依据,用于标记个案,本例中选取账号

通过以上的设置,我们将会获取到不同性别客单价的探索性分析结果。

图3:频率分析中的图表功能

2、应用统计分析

完成变量的选择后,单击右侧的统计,开启如图4所示的统计面板,其中的数值应用如下:

1. 描述,提供了平均值、中位数、方差、最大值、偏度等统计数值,可设置平均值的置信区间

2. M-估计量,为每个个案的数值应用权重,有助于减少极端值、异常值对平均值和中位数的影响

3. 离群值,即极值的分析,包含最大值、最小值

4. 百分位数,可将排序后的数据进行指定百分位值分组

本例中,我们选取了描述、M-估计值与离群值的数值。

图4:探索性统计分析选项

3、解读统计分析结果

从分析结果来看,如图5所示,当前数据包含了50个男性客单价个案,以及49个女性客单价个案。

图5:频数统计

如图6所示,从描述数据可以看到,男性的客单价平均值为100.8,而女性客单价平均值仅为47.6

而男性客单价平均值的95%置信区间上限中,平均值达到188,说明存在一些极端值,进一步查看最大值数据,发现最大值达到2000。

图6:描述性数值

这个最大值2000是单个个案,还是多个个案呢?另外,除了最大值外,是否存在其他极端值。为了解答以上问题,我们可以进一步查看极值分析。

如图7所示,可以看到,男性客单价中,账号77与账号85的客单价都属于极端值。

图7:极值分析

为了避免这些极值的影响,我们可以查看M估计量。如图8所示,经过M估计量的加权后,男性客单价平均值就变得比较正常了。

图8:M估计值

综上所示,通过IBM SPSS Statistics探索性分析的描述性统计数值,可获取到数据的平均值、极值等统计数值,有助于检查数据中的异常值情况。

另外,在《应用SPSS探索性分析,检验数据的正态分布》一文中,将会继续介绍探索性分析中的检验正态性功能。如需获取下一节内容,可前往IBM SPSS Statistics中文网站

作者:泽洋

展开阅读全文

标签:IBM SPSS Statistics探索性分析SPSS探索性因子分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: