SPSS > 使用技巧 > 在SPSS中用Kaplan-Meier模型判断单个指标对生存期的影响

在SPSS中用Kaplan-Meier模型判断单个指标对生存期的影响

发布时间:2021-06-10 16: 09: 36

之前我们用Cox回归模型探讨过多个指标对生存期的影响,但是Cox回归模型仅限于数据中具有多个指标,如果我们只有一个指标,那么又该如何进行生存期影响分析呢? 

下面我们将学习另外一种生存分析模型--Kaplan-Meier模型,该模型可用于分析单个指标对生存期的影响差异。

一、Kaplan-Meier模型设置

首先还是先来看一下我们的演示数据,数据按照手术方式这一指标分为2组,手术方式用0和1表示,因变量有2个,生存结果和生存时间。生存结果用0表示存活,1表示死亡;生存时间表示手术后生存的总周数。

图1:演示数据

在分析菜单中,找到生存分析项,然后点击其中的“Kaplan-Meier”,打开我们的KM模型设置界面。

图2:Kaplan-Meier

接着我们在时间项中选择“生存时间”,状态选择生存结果,点击“定义事件”按钮,选择单值,值输入1,再点击继续回到上个界面中,设置因子为单指标变量—手术方式,操作步骤见图3。

图3:KM设置

点击“比较因子”按钮,在检验统计中,勾选“秩的对数”和“布雷斯洛”作为检验组间生存分布是否相同的组间比较方法。

其中,“秩的对数”方法,对远期差异较为敏感;而布雷斯洛对近期差异较为敏感。因此,对于一开始粘在一起,随时间推移越拉越开的生存曲线,“秩的对数”方法较“布雷斯洛”方法容易得到差异有显著性的结果;反之,对于一开始相差较大,随着时间推移反而越来越近的生存曲线,“布雷斯洛”方法容易得到差异有显著性的结果。

图4:比较因子设置

在选项设置中,我们在统计栏中勾选上“平均值和中位数生存分析函数”,在图一栏中勾选上“生存分析函数”,如图5。最后点击继续和确定,生成模型分析结果。

图5:选项设置

二、结果分析

最终生成的结果表格如图6所示,共有三个表格。我们主要看中间的表格,从表格中我们可以看出,手术方式1估算的平均存活时间为19.846周,手术方式2,估算的平均存活时间为7.376周。

图6:结果表格

除上述三个表格外,我们还绘制了一个生存分析函数图,如图7。从图中可更直观看出手术方式1比手术方式2的存活时间要更长。

图7:生存函数分析图

以上统计分析结果也说明了Kaplan-Meier模型在单指标因素对生存期的影响分析中,具有较好的准确性。以上就是本节关于IBM SPSS Statistic软件使用Kaplan-Meier模型的所有教程,希望能给大家在数据的生存分析中,带来一定的帮助。

作者署名:包纸

展开阅读全文

标签:spss

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: