发布时间:2021-05-21 11: 29: 09
我们在实际的工作生活中,往往结果都不是由单个因素所决定的,而是由多个复杂的指标共同产生。如衡量某个人是否健康时,我们会根据他的年龄、性别、过往病史等多个因素同时进行评价。
接下来我们就需要使用到IBM SPSS Statistics,来绘制数据的ROC曲线,进而分析数据结果的准确性。
一、分析预测
首先准备好我们要使用的数据,如图1,这是一组关于癌症患者与非癌症人员的各项指标数据,我们需要通过分析,判断这些指标,是否能初步判断人员患上癌症的概率。
第一步:点击“分析”菜单中的“回归”,选择“二元Logistic”,通过二元Logistic回归模型,用性别、年龄、BMI、是否吸烟和过往COPD病史,来计算人员患癌症的概率。
在回归设置界面中,设置因变量为cancer,在块中加入除了cancer以外的其他指标,最后在方法中选择“向前:LR”方法,具体设置如图3。
又因为在本组数据中,COPD是多分类变量,而不是简单的二分类,我们将COPD的程度,使用0到4进行表示,分别表示无、轻度、中度、重度。
因此我们需要点击上图3右侧的“分类”,自定义分类变量。在分类协变量中选择COPD,然后选择参考类别为“第一个”,点击“继续”。
最后,点击“保存”按钮(非确定按钮),然后勾选上“预测值”中的“概率”,如图5,此时SPSS就会帮我们生成每条记录的癌症预测概率值。
具体的预测值如图6,PRE_1就是SPSS自动生成的预测概率值。
二、绘制ROC曲线
有了预测概率结果后,我们就可以利用ROC曲线,来分析这个预测结果的准确性。点击“分析”菜单,选择“分类”,点击“ROC曲线”,如图7。
检验变量选择SPSS生成的“PRE_1”,下方的状态变量选择“cancer”,然后状态变量值设置为1,完成上述设置后点击“确定”,即可生成关于这2个预测和实际指标之间的ROC曲线。
最后生成的结果见下图9,我们可通过观察ROC曲线下的面积,来判断预测准确性。
以上就是关于使用SPSS进行多指标下的ROC曲线分析的全部教程,我们首先通过回归模型生成预测值,再将预测值和真实值之间进行ROC曲线分析,得出我们想要的结论。如果大家对IBM SPSS Statistics软件有兴趣,欢迎进入IBM SPSS Statistics中文网站下载试用。
作者署名:包纸
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。...
阅读全文 >
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。...
阅读全文 >
SPSS非参数分析t检验 SPSS非参数分析两两比较
非参数分析适用于数据分布呈偏态,数据方差不齐性等状态,可信度与参数分析相比有所下降,当然使用条件也更为宽松,我们可以借助IBM SPSS Statistics进行非参数分析,本文以大家比较感兴趣的非参数分析t检验和两两比较为例,向大家介绍SPSS非参数分析t检验,SPSS非参数分析两两比较的实施过程。...
阅读全文 >
spss层次聚类分析步骤 spss层次聚类分析结果解读
spss层次聚类分析步骤,层次聚类分析可使用spss的系统聚类分析方法,本文会举例演示分析步骤。spss层次聚类分析结果解读,主要是通过冰柱图与树状图(谱系图)来确定聚类数目,并以此确认各样本的聚类归属。...
阅读全文 >