IBM SPSS Statistics 中文网站 > 使用技巧 > spss两因素方差分析案例 spss两因素方差分析步骤及结果分析

spss两因素方差分析案例 spss两因素方差分析步骤及结果分析

发布时间:2022-04-13 11: 11: 54

方差分析作为一种非常有效的分析方法,用于分析两组或两组以上的数据差异。在实际的数据分析过程中,一个因素对因变量的影响脚下,分析结果无法看出明显差异,这时往往会考察两个甚至多个因素对因变量的影响,就用到两因素方差分析方法。两因素方差分析是指对有两个自变量,一个因变量的实验数据进行分析处理,通常是通过分析结果来判断实验处理对实验结果有没有影响。那么,如何使用spss进行两因素方差分析?这里介绍一下spss两因素方差分析案例,spss两因素方差分析步骤及结果分析。

一、spss两因素方差分析案例

 实例:

          以一份设备故障数据为例子介绍SPSS两因素方差分析具体的操作步骤,数据中记录了每个设备归属的分公司、项目,以及产生的故障数量,如图1所示,在实验的方法为多因素完全随机的情况下,获取数据,进行两因素完全随机方差分析,即对有一个因变量,两个自变量的随机实验数据进行分析。

 

 图1
 图1 

                                                                                        

          下面以故障数量为因变量,以分公司、项目这两个因素为自变量,使用SPSS实际操作进行两因素方差分析。

步骤1:导入数据
 

图2
图2

                      

步骤2:在菜单中选择分析-》一般线性模型-》单变量,打开分析操作窗口。

图3
图3

 

                按照上操作步骤,点击“单变量”后,弹出单变量对话框,如图4。 

图4
图4

 

步骤3:将“故障数量”放入【因变量】方框中;将“分公司”、“项目”放入【固定因子】方框中。如图5 所示:

图5
图5

 

步骤4:在上述的“单变量”对话框中,选择“模型”按钮,打开“单变量:模型”对话框,如图6,选择【全因子】选项,点击继续。

图6
图6

                                                                                                         

步骤5:  在“单变量”对话框中,选择“事后比较”按钮,打开“单变量:实测平均值的事后多重比较”对话框,如图7,从”因子“框中选择【分公司】、【项目】添加到”下列各项目的时候检验“方框中,点击继续。

 图7
 图7

                                                                                                               

步骤6:在“单变量”对话框中,选择“选项”按钮,打开“单变量:选项”对话框,如图8,勾选【描述统计】、【齐性检验】,显著性水平默认为0.5,点击继续。

图8
图8

                                                                                                         

步骤7:最后,在“单变量”对话框中,点击“确定”按钮,进行两因素方差分析,并生成两因素方差分析结果,如图9。

图9
图9

                                                                                                             

  步骤8: 在步骤7的对话框中点击确定后,SPSS完成两因素方差分析自动生成分析结果,将自动弹出IBM SPSS Statistics查看器。在查看器中展示了此次两因素方差分析的分析结果。如图10所示。

图10
图10

                                                                                         

二、SPSS两因素方差分析步骤及结果分析

     通过选择SPSS的菜单中的“分析”→“一般线性模型”→“单变量”分析方法,然后,选择实例数据表中的“故障数量”为因变量,“项目”、“分公司”为自变量开展两因素方差分析,指定“模型”为全因子,在“选项”中选择展示“描述”信息及“齐性检验”后,点击“确定”,生成SPSS两因素方差分析结果。通过分析得到的数据说明了什么呢?下面介绍一下,如何分析SPSS两因素方差分析结果中的各数据指标含义,即如何理解分析结果。

  (1)描述统计

     图11所示,统计数据包括每组实验的数据的平均值、标准差和频度(N)。 

图11
图11

                                                                                                                    

(2)等同性检验

       图12中,显著性概率P基于中位数时的P值=0.179>0.05,因此原假设”各个组中的因变量误差方差相等“成立,数据呈现偏态分布。

 

图12
图12

                                                                                                          

  (3)主体间效应检验

        图13所示,“项目”对应“显著性”为0.451 ,p=0.39>0.05,所以项目对故障数量的主效应是比较显著的,分公司对应“显著性”为0.39,p=0.39>0.05,所以分公司对故障数量的主效应也是比较显著,且分公司与项目的交互影响显著(p=0.097>0.05)。 

图13
图13

                                                                                                          
 三、小结

           以上就是使用SPSS软件,以一份设备故障数据为实例,进行两因素方差分析的具体操作步骤,文中详细介绍了spss两因素方差分析案例,讲解了spss两因素方差分析步骤及结果分析。由上述分析结果可知,分公司与项目两个因素交互作用对设备的故障数量产生影响比较显著。

展开阅读全文

标签:IBM SPSS Statistics多因素方差分析多元方差分析方差分析SPSS教程

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31
spss方差齐性检验如何操作 spss方差齐性检验怎么看方差齐不齐
方差的大小代表了数据分布的离散程度,方差大,数据分布越分散,方差小,数据分布越集中。组间数据分布离散程度差别较大时,是不能进行比较的,此时不能确定两组数据的差异来源于组间还是组内,因此方差齐性检验是进行组间数据比较的基础。关于SPSS方差齐性检验如何操作,SPSS方差齐性检验怎么看方差齐不齐,本文借助实例,向大家作简单介绍。
2023-10-25
spss线性回归图怎么做 spss线性回归图怎么看结果
借助回归分析,我们可以了解到两组变量是否存在具有统计学意义的依赖关系,描述这种依赖关系的方程是什么,方程可以在多大程度上解释因变量的变化。使用SPSS,不仅可以简便的完成回归分析,还可以为变量绘制散点图,便于大家直观的了解变量间关系。关于SPSS线性回归图怎么做,SPSS线性回归图怎么看结果,本文借助实例,向大家做简单的介绍。
2023-10-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: