IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS重新编码之编码为相同或不同的变量

SPSS重新编码之编码为相同或不同的变量

发布时间:2020/12/21 10:52:04

IBM SPSS Statistics重新编码功能,包含了重新编码到相同的变量、重新编码到不同的变量、自动重新编码的功能。本文将重点讲解重新编码为相同或不同变量的功能。

重新编码到相同的变量,可对数值变量和字符串变量重新编码,但新编码必须与现有变量是相同的数据类型(数值或字符串)。重新编码到不同的变量,则可将数值变量重新编码为字符串变量,反之亦然。

一、重新编码到相同的变量

首先,先演示重新编码到相同的变量的功能。我们使用的是一组包含满意度数值的数据,目标是将满意度为5或4的数值重新编码为1,将满意度为3或2或1的数值重新编码为0。

图1:满意度数据

1、使用重新编码为相同变量功能

如图2所示,打开IBM SPSS Statistics转换菜单中的“重新编码为相同的变量”。

图2:重新编码为相同变量功能

2、选择变量

接着,在如图3所示的设置面板中,将“满意度”添加为数字变量(即需重新编码的变量)后,单击“旧值和新值”按钮。

图3:选择数字变量

3、匹配旧值与新值

接着,如图4所示,在旧值与新值中都选择“值”选项,并分别将旧值5、4与新值1匹配,将旧值3、2、1与新值0匹配。设置完成后,单击“继续”。

图4:匹配旧值与新值

4、完成变量的重新编码

如图5所示,可以看到,原变量已经重新编码为1、0的新值。

需要注意的是,重新编码为相同变量功能是直接在现有变量上更改编码的,如果不希望更改现有变量的值,就需要使用重新编码为不同的变量。

图5:完成满意度编码的重新编码

二、重新编码到不同的变量

接下来,我们使用一个新的数据组演示重新编码到不同变量的功能,目的是要将满意度的字符串值重新编码为数值型值。

图6:满意度数据

1、使用重新编码为不同变量功能

如图7所示,打开转换菜单中的重新编码为不同变量功能。

图7:重新编码为不同变量功能

2、选择变量

接着,如图8所示,将满意度变量添加到输出变量中,IBM SPSS Statistics已自动识别满意度变量为字符串变量。

图8:添加输出变量

接着,如图9所示,设置输出变量的名称与标签后,单击“变化量”按钮,将名称与标签应用到左侧的方框中。然后,再单击“旧值和新值”按钮,进行旧值与新值的匹配。

图9:设置输出变量名称与标签

3、匹配旧值与新值

如图10所示,我们在旧值中分别将非常满意、比较满意、一般、比较不满意、非常不满意与新值中的5、4、3、2、1相匹配。

另外,还可通过“输出变量是字符串”选项将新值设置为字符串值,或通过“将数字字符串转换为数字”将新值设置为数字型数值(当数字为字符串值时使用)。

图10:匹配旧值与新值

4、完成变量的重新编码

完成了变量的重新编码后,如图11所示,可以看到,数据集中出现了一个新的变量“满意程度数值”,其中包含了“满意度”变量重新编码的数值。

图11:完成满意度编码的重新编码

以上就是SPSS重新编码为相同或不同的变量应用介绍。大家可以根据实际情况选用不同的编码方式,另外,还可以使用自动编码的方式,提高工作效率。如需获取自动编码的介绍,欢迎访问IBM SPSS Statistics中文网站。

作者:泽洋

标签:SPSS
SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣