SPSS > 使用技巧 > 如何进行SPSS的重复测量方差分析

如何进行SPSS的重复测量方差分析

发布时间:2021-01-20 10: 35: 31

IBM SPSS Statistics的重复测量方差分析,为重复测量的数据提供了单变量与多变量的方差分析,其分析的是多次测量数据之间存在的相关关系,与单因素或多元素方差分析不同的是,其不同测量数据之间不是独立的,存在一定相关性。

重复测量方差分析与分析测试前后数据方法相似,但需要注意的是重复测量方差分析要求使用3个或以上的测试次数。接下来,我们使用一个实际的操作例子演示一下SPSS的重复测量方差分析。

一、使用数据介绍

如图1所示,打开一组包含门店编码以及三组销售量的数据,需要注意的是,重复测量方差分析使用的是变量组的数据。

图1:示例数据

为了让三组销售量的数据含义更加清晰,可以打开变量视图,并在其标签处输入相关的备注,表明三组数据分别代表的是1-3月份的销售量。

图2:变量标签

二、应用重复测量方差分析

接着,依次单击SPSS的分析——一般线性模型——重复测量,来开启重复测量设置面板。

图3:重复测量分析

1.定义因子

如图4所示,主体内因子指的是对重复测量的,具有相关性的变量进行分组。由于本文进行的是单变量的重复测量分析,因此只需添加一个“月份”的主体内因子,并将其级别数指定为“3”。

如果进行的是多变量的重复测量方差分析,就要注意添加的因子顺序,每个因子都构成前一个因子内的一个水平。比如,先添加了一个月份的因子,然后再添加一个年份(如2019、2020)的因子,就会出现“2020年月份1”、“2020年月份2”、“2020年月份3”三个因子。

图4:定义主体内因子

完成了主体内因子的添加后,再添加重复测量的变量名称,本例中测量的是“销售量”,在测量名称中输入“销售量”,并点击“添加”即可。

图5:定义测量名称

2.选择变量

定义了因子后,软件自动跳转到重复测量设置界面。

如图4所示,右侧主体内变量已经出现了刚才定义的因子,接下来,需要将变量与定义的因子对应,选中三组重复测量变量(1-3月份销售量),将其添加到右侧方框中。

图6:选择变量

添加完毕后,如图7所示,即可将变量与定义的因子一一对应。接着,单击“图”选项,设置轮廓图。

图7:选取主体内变量

3.轮廓图

在轮廓图设置面板中,将月份添加为水平轴,以观察不同月份的销量边际平均值。

图8:添加月份

将“月份”添加到图选项后,选择“折线图”作为轮廓图。

图9:月份折线图

4.估算边际平均值

接着,打开估算边际平均值面板,将月份添加到右侧方框中,以观察不同月份的相关关系。

图10:估算边际平均值

5.选项设置

由于本例中不包含主体间因子,仅包含主体间变量,因此不作齐性检验,仅选择“描述统计”作为数据参考。

图11:选项设置

三、小结

综上所述,IBM SPSS Statistics重复测量方差分析,衡量的是多次测量值之间的关系,比较的是不同时间点的动态变化趋势,其分析重点是测量值之间的相关关系。

由于重复测量方差分析,需满足因变量的方差协方差矩阵相等,也就是球形假设。因此,在解读数据的时候,需查看球形假设的检验结果。关于重复测量方差分析结果的详细解读,请参考IBM SPSS Statistics中文网站中的《解读SPSS重复测量方差分析的检验结果》文章。

作者:泽洋

展开阅读全文

标签:spss重复测量方差分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS生存曲线数据怎么录入 SPSS怎么做生存曲线
在数据分析的领域中,生存分析一直是一个重要的概念,它在生物医学领域有着广泛的应用。而在SPSS中录入生存曲线数据,是我们进行生存分析的第一步,也是关键的一步,生存曲线的数据与后续的数据分析有着重要的关联。SPSS软件在其中可以帮助我们快速进行数据分析和曲线绘制,接下来给大家介绍SPSS生存曲线数据怎么录入,SPSS怎么做生存曲线的具体内容。
2025-11-25
SPSS如何处理缺失值 SPSS数据清理与替换方法
每当我们需要处理一组数据的缺失值时,就需要用到专业的数据分析软件。在数据分析软件的这个领域中,SPSS既能够帮助我们处理数据样本的缺失值,还可以针对数据的缺失值对样本进行整体替换与填补。接下来给大家介绍SPSS如何处理缺失值,SPSS数据清理与替换方法的具体内容。
2025-11-25
SPSS多层线性模型如何构建 SPSS多层线性模型层级变量设置
每当在进行数据分析时,许多小伙伴可能都会遇到构建多层线性模型的情况。构建多层线性模型能扩大已测量的数据样本,使数据涵盖更多内容,进而更加有说服力。而在进行多层线性模型构建时,一款好用的数据分析软件是不可缺少的,这里给大家介绍我自己常用的SPSS数据分析软件,同时以它为例向大家介绍SPSS多层线性模型如何构建,SPSS多层线性模型层级变量设置的具体内容。
2025-11-25
SPSS怎样进行聚类分析 SPSS聚类中心不稳定怎么解决
对于经常需要与数据分析打交道的小伙伴来说,想必对聚类分析这一分析操作肯定是不陌生的。聚类分析指的是收集相似的数据样本,并在相似数据样本的基础之上收集信息来进行分类,下面以SPSS为例,向大家介绍SPSS怎样进行聚类分析,SPSS聚类中心不稳定怎么解决的具体内容。
2025-11-25
SPSS怎么绘制柱状图 SPSS图表编辑器使用技巧
由于数据分析领域经常需要庞大的数据样本,所以将数据图像化便是其中的一项重要任务。因此绘制数据分析图便成为了其中的关键操作。SPSS作为一款专业的数据分析软件,不仅可以用它来处理日常的各种数据分析内容,还能够完成数据图像的绘制和图表的编译。接下来给大家介绍SPSS怎么绘制柱状图,SPSS图表编辑器使用技巧的具体内容。
2025-11-25
SPSS如何做因子分析 SPSS因子载荷解释不清晰怎么办
每当我们在进行数据分析的工作时,因子分析是绕不开的一个话题。它在一组数据的分析中占据了重要的位置,主要用来检验不同变量之间是否存在共性的因子,而这些因子会影响数据的变量,例如从学生的考试成绩中判断是否存在共有的数据因子,这部分共有的数据因子对学生的成绩好坏会产生影响。下面我们以一款专业的数据分析软件SPSS为例,向大家介绍SPSS如何做因子分析,SPSS因子载荷解释不清晰怎么办的具体内容。
2025-11-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: