SPSS > 使用技巧 > 如何进行SPSS的重复测量方差分析

如何进行SPSS的重复测量方差分析

发布时间:2021-01-20 10: 35: 31

IBM SPSS Statistics的重复测量方差分析,为重复测量的数据提供了单变量与多变量的方差分析,其分析的是多次测量数据之间存在的相关关系,与单因素或多元素方差分析不同的是,其不同测量数据之间不是独立的,存在一定相关性。

重复测量方差分析与分析测试前后数据方法相似,但需要注意的是重复测量方差分析要求使用3个或以上的测试次数。接下来,我们使用一个实际的操作例子演示一下SPSS的重复测量方差分析。

一、使用数据介绍

如图1所示,打开一组包含门店编码以及三组销售量的数据,需要注意的是,重复测量方差分析使用的是变量组的数据。

图1:示例数据

为了让三组销售量的数据含义更加清晰,可以打开变量视图,并在其标签处输入相关的备注,表明三组数据分别代表的是1-3月份的销售量。

图2:变量标签

二、应用重复测量方差分析

接着,依次单击SPSS的分析——一般线性模型——重复测量,来开启重复测量设置面板。

图3:重复测量分析

1.定义因子

如图4所示,主体内因子指的是对重复测量的,具有相关性的变量进行分组。由于本文进行的是单变量的重复测量分析,因此只需添加一个“月份”的主体内因子,并将其级别数指定为“3”。

如果进行的是多变量的重复测量方差分析,就要注意添加的因子顺序,每个因子都构成前一个因子内的一个水平。比如,先添加了一个月份的因子,然后再添加一个年份(如2019、2020)的因子,就会出现“2020年月份1”、“2020年月份2”、“2020年月份3”三个因子。

图4:定义主体内因子

完成了主体内因子的添加后,再添加重复测量的变量名称,本例中测量的是“销售量”,在测量名称中输入“销售量”,并点击“添加”即可。

图5:定义测量名称

2.选择变量

定义了因子后,软件自动跳转到重复测量设置界面。

如图4所示,右侧主体内变量已经出现了刚才定义的因子,接下来,需要将变量与定义的因子对应,选中三组重复测量变量(1-3月份销售量),将其添加到右侧方框中。

图6:选择变量

添加完毕后,如图7所示,即可将变量与定义的因子一一对应。接着,单击“图”选项,设置轮廓图。

图7:选取主体内变量

3.轮廓图

在轮廓图设置面板中,将月份添加为水平轴,以观察不同月份的销量边际平均值。

图8:添加月份

将“月份”添加到图选项后,选择“折线图”作为轮廓图。

图9:月份折线图

4.估算边际平均值

接着,打开估算边际平均值面板,将月份添加到右侧方框中,以观察不同月份的相关关系。

图10:估算边际平均值

5.选项设置

由于本例中不包含主体间因子,仅包含主体间变量,因此不作齐性检验,仅选择“描述统计”作为数据参考。

图11:选项设置

三、小结

综上所述,IBM SPSS Statistics重复测量方差分析,衡量的是多次测量值之间的关系,比较的是不同时间点的动态变化趋势,其分析重点是测量值之间的相关关系。

由于重复测量方差分析,需满足因变量的方差协方差矩阵相等,也就是球形假设。因此,在解读数据的时候,需查看球形假设的检验结果。关于重复测量方差分析结果的详细解读,请参考IBM SPSS Statistics中文网站中的《解读SPSS重复测量方差分析的检验结果》文章。

作者:泽洋

展开阅读全文

标签:spss重复测量方差分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS曲线回归分析的基本原理 SPSS曲线回归分析结果解读
我们在对一组数据样本进行分析的时候,曲线回归分析是其中不可缺少的一个环节。曲线回归分析作为数据分析中的一项重要操作,主要在评估数据样本之间的关联度以及相互关系时有着广泛应用,这样可以得到数据样本的整体变化趋势以及评估未来的数据发展周期(例如分析销售额和营销成本之间的关系)。而曲线回归的结果对数据样本测算同样有着重要意义,下面以SPSS为例,给大家介绍SPSS曲线回归分析的基本原理,SPSS曲线回归分析结果解读的具体内容。
2026-01-08
SPSS怎么导出结果为Excel SPSS表格导出后乱码怎么办
SPSS既能够帮助我们进行专业的数据分析(包含了回归分析、线性模型分析和缺失值分析等),又可以把数据分析后得到的报告结果进行保存或导出,便于数据分析结果的引用。下面就以SPSS为例,向大家介绍SPSS怎么导出结果为Excel,SPSS表格导出后乱码怎么办的具体内容。
2026-01-08
SPSS怎么进行描述性统计分析 SPSS均值标准差计算步骤
在统计学当中,描述性分析主要用来对调查样本总体的数据进行相关描述性质的研究(比如用图形的方式描述分析)。而在进行描述性分析的时候,我经常会用到SPSS数据分析软件,这款软件给我提供了许多数据分析的帮助。接下来给大家介绍SPSS怎么进行描述性统计分析,SPSS均值标准差计算步骤的具体内容。
2026-01-08
SPSS怎么做回归分析 SPSS回归结果不显著怎么办
在数据分析的领域中,回归分析相当于为数据样本开启了一道未来大门,它可以帮助我们评估和判断数据样本未来的走势和发展方向,同时帮助我们判断不同数据变量之间的关系。如果遇到回归结果不显著的情况,我们也需要对这部分数据进行处理,避免出现无效的分析情况。下面以SPSS为例,给大家介绍SPSS怎么做回归分析, SPSS回归结果不显著怎么办的具体内容。
2026-01-08
SPSS如何做方差分析 SPSS方差分析结果显著性该怎么解释
在数据分析这个领域当中,许多小伙伴经常会遇到进行方差分析的操作。方差分析在数据统计中是一个常见的数据处理方式,主要用来检验数据样本的离散分布和稳定性情况。SPSS既能够帮助我们进行专业的方差分析,还可以得到数据的分析报告。接下来以SPSS为例,向大家介绍SPSS如何做方差分析,SPSS方差分析结果显著性该怎么解释的具体内容。
2026-01-08
SPSS偏度和峰度的分析步骤 SPSS偏度和峰度的分析结果解读
偏度和峰度是我们在进行数据分析的过程中,判断数据是否符合正态分布的重要标准之一,通过这两个数值可以很清晰地看出数据的整体走势和集中状态。因此这两项数值也经常被用于市场学分析、股市分析中,能够帮忙用户去发现某些潜在的规律。今天我就以SPSS偏度和峰度的分析步骤,SPSS偏度和峰度的分析结果解读这两个问题为例,来向大家讲解一下关于偏度和峰度的相关知识。
2026-01-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: