IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > 解读SPSS重复测量方差分析的检验结果

解读SPSS重复测量方差分析的检验结果

发布时间:2021/01/21

重复测量方差分析是对一个因变量重复测量,并分析测量值之间相关关系的分析方法。在《如何进行SPSS的重复测量方差分析》一文中,我们已经详细学习了IBM SPSS Statistics重复测量方差分析的设置方法。

本文将重点解读重复测量方差的分析结果。重复测量分析往往需要查看球形假设的检验结果。根据数据满足或不满足球形假设的情况,需要实施不同的检验方法。接下来,我们一起来解读下重复测量方差分析结果。

图1:示例数据

一、描述统计

本文分析的是1-3月份重复测量的销售量数据。如图2所示,从数据趋势来看,1-3月份的销售量呈现增长的趋势。

图2:描述统计

二、估算边际平均值

而从估算边际平均值的轮廓图,如图3所示,也能看到随着月份的推进,销售量在增长,而且1-2月份的增长较多,而2-3月份则增长较少。

图3:估算边际平均值

三、球形假设检验

为了进一步检验1-3月份的销售量是否有显著差异,我们需进一步查看重复测量的方差检验结果。

在这之前,需先查看数据是否服从球形假设。如图4所示,在Mauchly球形度检验结果中(原假设为重复测量的因变量数据服从方差协方差矩阵相等),可以看到,其显著性数值为0.191>0.05,不能拒绝原假设,也就是说,数据服从球形假设。

图4:满足球形假设

在因变量数据满足球形假设的前提下,如图5所示,查看“假设球形度”的显著性数值。其显著性数值为0.00<0.05,拒绝原假设,也就是说1-3月份重复测量的销售量数据存在着显著性差异。

如果数据不服从球形假设时,就需要查看格林豪斯-盖斯勒或辛-费德特的显著性数值。

图5:球形假设显著性

四、成对比较

从方差分析中,我们知道1-3月份的销售量数据存在显著差异。那么,具体是哪些月份之间存在显著差异呢?关于这一问题,可以查看成对比较结果。

如图6所示,可以看到1月份与2月份、3月份之间存在着显著性差异(显著性值均小于0.05),而2月份与3月份之间无显著性差异(显著性值均大于0.05)。

图6:成对比较

三、小结

综上所述,通过使用IBM SPSS Statistics的重复测量方差分析,可检验多次测量的因变量测量值是否存在差异,适用于检验某项方案、措施等是否存在着持续性的效益等,但需注意的是,观测值之间需存在一定相关关系。

作者:泽洋

标签:spss方差分析

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07