IBM SPSS Statistics 中文网站 > 使用技巧 > 解读SPSS重复测量方差分析的检验结果

解读SPSS重复测量方差分析的检验结果

发布时间:2021/01/21 10:18:58

重复测量方差分析是对一个因变量重复测量,并分析测量值之间相关关系的分析方法。在《如何进行SPSS的重复测量方差分析》一文中,我们已经详细学习了IBM SPSS Statistics重复测量方差分析的设置方法。

本文将重点解读重复测量方差的分析结果。重复测量分析往往需要查看球形假设的检验结果。根据数据满足或不满足球形假设的情况,需要实施不同的检验方法。接下来,我们一起来解读下重复测量方差分析结果。

图1:示例数据

一、描述统计

本文分析的是1-3月份重复测量的销售量数据。如图2所示,从数据趋势来看,1-3月份的销售量呈现增长的趋势。

图2:描述统计

二、估算边际平均值

而从估算边际平均值的轮廓图,如图3所示,也能看到随着月份的推进,销售量在增长,而且1-2月份的增长较多,而2-3月份则增长较少。

图3:估算边际平均值

三、球形假设检验

为了进一步检验1-3月份的销售量是否有显著差异,我们需进一步查看重复测量的方差检验结果。

在这之前,需先查看数据是否服从球形假设。如图4所示,在Mauchly球形度检验结果中(原假设为重复测量的因变量数据服从方差协方差矩阵相等),可以看到,其显著性数值为0.191>0.05,不能拒绝原假设,也就是说,数据服从球形假设。

图4:满足球形假设

在因变量数据满足球形假设的前提下,如图5所示,查看“假设球形度”的显著性数值。其显著性数值为0.00<0.05,拒绝原假设,也就是说1-3月份重复测量的销售量数据存在着显著性差异。

如果数据不服从球形假设时,就需要查看格林豪斯-盖斯勒或辛-费德特的显著性数值。

图5:球形假设显著性

四、成对比较

从方差分析中,我们知道1-3月份的销售量数据存在显著差异。那么,具体是哪些月份之间存在显著差异呢?关于这一问题,可以查看成对比较结果。

如图6所示,可以看到1月份与2月份、3月份之间存在着显著性差异(显著性值均小于0.05),而2月份与3月份之间无显著性差异(显著性值均大于0.05)。

图6:成对比较

三、小结

综上所述,通过使用IBM SPSS Statistics的重复测量方差分析,可检验多次测量的因变量测量值是否存在差异,适用于检验某项方案、措施等是否存在着持续性的效益等,但需注意的是,观测值之间需存在一定相关关系。

作者:泽洋

标签:方差分析spss
SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣