SPSS > 使用技巧 > SPSS的单样本,独立样本,配对样本T检验有什么不同?

SPSS的单样本,独立样本,配对样本T检验有什么不同?

发布时间:2020-12-04 11: 26: 30

IBM SPSS Statistics的比较平均值分析法属于参数型的检验法,是以已知总体分布的前提下,检验样本数据与总体数据的差异,其中包含了平均值、单样本T检验、独立样本T检验、配对样本T检验以及单因素ANOVA检验的分析方法。

其中,单样本T检验、独立样本T检验、配对样本T检验都是运用T分布理论来分析差异发生的概率,从而比较两个平均数的差异是否显著的分析方法。那么,这三种T检验的分析方法有什么不同呢?

图1:SPSS比较平均值

一、检验的目的不同

单样本T检验、独立样本T检验、配对样本T检验这三种比较平均值的T检验方法,其关键的不同点是检验数据的目的不同。

相比于其他两种T检验方法,单样本T检验就显得比较简单了。其原理是运用样本数据的平均值与一个常数检验值相比较,以检验样本数据与检验值是否有差异,常用于检验样本数据是否符合标准值等研究目的,比如抽取样本身高值是否符合标准值、抽取的样本中含水量是否符合标准含水量等。

在图2所示的单样本T检验例子中,抽取了部分初中生的身高样本数据,以153为检验值,检验身高样本平均值与153的检验值是否有显著性差异,结果表明样本身高均值与检验值有显著性差异。

图2:单样本T检验结果

相对比于单样本T检验,独立样本T检验与配对样本T检验的研究目的就比较相似,但也有不同。两者研究的不同点在于,独立样本T检验研究的是两组个案的均值数据差异,而配对样本T检验研究的是两个配对变量的均值数据差异。

比如,如图3所示的饮用不同类型牛奶后的独立样本T检验例子,研究的是两个个案组分别饮用牛奶A、牛奶B后的身高均值差异,从其显著性数值可以看到,两组个案的身高均值无差异。

图3:独立样本T检验结果

而配对样本T检验则更加侧重于比较两个配对变量的均值是否有差异。比如,如图4所示,研究个案在饮用牛奶前与饮用牛奶后的身高数据,结果表明,饮用牛奶后的身高均值显著高于饮用牛奶前的身高均值。

图4:配对样本T检验结果

二、使用的数据类型不同

鉴于检验目的不同,这三种T检验方法使用的数据类型也不同。

如图5所示,单样本T检验使用的是单变量数据,同时还需要使用一个检验值作比较。

图5:单样本T检验的数据格式

而独立样本T检验使用的是两组个案的数据,同时,还需要通过数值型编码标识个案。

图6:独立样本T检验的数据格式

配对样本T检验使用的是两组变量的数据。一组配对样本T检验中可包含多组配对变量,但各组配对变量需一一对应地配对。

图7:配对样本T检验的数据格式

三、小结

综上所示,单样本T检验适合用于研究样本数据是否符合标准值的情况;独立样本T检验适合用于研究两组个案的均值是否有差异的情况;配对样本T检验适合用于检验两组变量均值是否有差异的情况。

大家可根据实际情况选取合适的检验方法,需要注意的是,以上三种T检验法均属于参数检验法,是在总体分布已知的情况下使用的。

作者:泽洋

展开阅读全文

标签:IBM SPSS StatisticsT检验

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验不显示组别怎么办 SPSS非参数检验结果怎么解读
在数据分析领域,研究者通常要对非正态分布的数据进行非参数检验,这样不仅可以判断不满足正态分布的变量之间是否存在关系,还能够清楚了解数据的秩次信息。今天,我们以SPSS非参数检验不显示组别怎么办,SPSS非参数检验结果怎么解读这两个问题为例,带大家了解一下SPSS非参数检验的相关知识。
2025-06-12
SPSS标准化残差散点图怎么画 SPSS标准化残差大于3怎么办
在针对因变量为数值型变量展开建模分析的时候,研究者可以使用SPSS线性回归的残差分析检验变量的正态性特征,例如以残差等方差性判断回归残差的方差齐性,进而有助于优化和改进线性数据建模。今天,我们SPSS标准化残差散点图怎么画,SPSS标准化残差大于3怎么办这两个问题为例,带大家了解一下SPSS标准化残差散点图的相关知识。
2025-06-12
SPSS标准化残差图怎么做 SPSS标准化残差图解读
在数据分析领域,如果研究者想对线性数据集的正态性进行分析,推荐使用SPSS残差图绘制的方法来高效掌握采集的数据信息,以便了解数据模型的拟合情况和误差分布。今天,我们以SPSS标准化残差图怎么做,SPSS标准化残差图解读这两个问题为例,带大家了解一下SPSS标准化残差的相关知识。
2025-06-11
SPSS中如何将文字表达改为数字 SPSS怎么把字符串改成数字格式
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS中如何将文字表达改为数字,SPSS怎么把字符串改成数字格式这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-10
SPSS数据透视表如何创建 SPSS数据透视表字段调整步骤
在数据分析领域,SPSS的功能设置不仅适用于分析繁杂数据组之间的相关关系,还能够计算各类数值并且制作出清晰明确的图表,例如数据透视表、交互作用图等。今天,我们以SPSS数据透视表如何创建,SPSS数据透视表字段调整步骤这两个问题为例,带大家了解一下SPSS透视表设置的相关知识。
2025-06-10
SPSS均值比较怎么操作 SPSS均值比较参数设置流程
在数据分析领域,如果研究者想要判断两组或多组数据在某一方面是否存在明显差异,可以使用SPSS的t检验、卡方检验等方法进行测量,不仅能得到清晰明确的数据表格查看各类占比情况,还能够据此知晓详细的参数设置情况。今天,我们以SPSS均值比较怎么操作,SPSS均值比较参数设置流程这两个问题为例,带大家了解一下SPSS均值比较的知识。
2025-06-06

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: