SPSS > 使用技巧 > SPSS的单样本,独立样本,配对样本T检验有什么不同?

SPSS的单样本,独立样本,配对样本T检验有什么不同?

发布时间:2020-12-04 11: 26: 30

IBM SPSS Statistics的比较平均值分析法属于参数型的检验法,是以已知总体分布的前提下,检验样本数据与总体数据的差异,其中包含了平均值、单样本T检验、独立样本T检验、配对样本T检验以及单因素ANOVA检验的分析方法。

其中,单样本T检验、独立样本T检验、配对样本T检验都是运用T分布理论来分析差异发生的概率,从而比较两个平均数的差异是否显著的分析方法。那么,这三种T检验的分析方法有什么不同呢?

图1:SPSS比较平均值

一、检验的目的不同

单样本T检验、独立样本T检验、配对样本T检验这三种比较平均值的T检验方法,其关键的不同点是检验数据的目的不同。

相比于其他两种T检验方法,单样本T检验就显得比较简单了。其原理是运用样本数据的平均值与一个常数检验值相比较,以检验样本数据与检验值是否有差异,常用于检验样本数据是否符合标准值等研究目的,比如抽取样本身高值是否符合标准值、抽取的样本中含水量是否符合标准含水量等。

在图2所示的单样本T检验例子中,抽取了部分初中生的身高样本数据,以153为检验值,检验身高样本平均值与153的检验值是否有显著性差异,结果表明样本身高均值与检验值有显著性差异。

图2:单样本T检验结果

相对比于单样本T检验,独立样本T检验与配对样本T检验的研究目的就比较相似,但也有不同。两者研究的不同点在于,独立样本T检验研究的是两组个案的均值数据差异,而配对样本T检验研究的是两个配对变量的均值数据差异。

比如,如图3所示的饮用不同类型牛奶后的独立样本T检验例子,研究的是两个个案组分别饮用牛奶A、牛奶B后的身高均值差异,从其显著性数值可以看到,两组个案的身高均值无差异。

图3:独立样本T检验结果

而配对样本T检验则更加侧重于比较两个配对变量的均值是否有差异。比如,如图4所示,研究个案在饮用牛奶前与饮用牛奶后的身高数据,结果表明,饮用牛奶后的身高均值显著高于饮用牛奶前的身高均值。

图4:配对样本T检验结果

二、使用的数据类型不同

鉴于检验目的不同,这三种T检验方法使用的数据类型也不同。

如图5所示,单样本T检验使用的是单变量数据,同时还需要使用一个检验值作比较。

图5:单样本T检验的数据格式

而独立样本T检验使用的是两组个案的数据,同时,还需要通过数值型编码标识个案。

图6:独立样本T检验的数据格式

配对样本T检验使用的是两组变量的数据。一组配对样本T检验中可包含多组配对变量,但各组配对变量需一一对应地配对。

图7:配对样本T检验的数据格式

三、小结

综上所示,单样本T检验适合用于研究样本数据是否符合标准值的情况;独立样本T检验适合用于研究两组个案的均值是否有差异的情况;配对样本T检验适合用于检验两组变量均值是否有差异的情况。

大家可根据实际情况选取合适的检验方法,需要注意的是,以上三种T检验法均属于参数检验法,是在总体分布已知的情况下使用的。

作者:泽洋

展开阅读全文

标签:IBM SPSS StatisticsT检验

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验怎么测中位数 SPSS非参数检验z值的意义
IBM SPSS Statistics这款软件对用户非常友好,例如非参数检验、数据随机性验证等统计分析,不需要复杂的操作,跟着步骤提示进行操作,即可快速生成统计结果表,新手也能快速掌握。今天我们就围绕SPSS非参数检验怎么测中位数,SPSS非参数检验z值的意义相关内容为大家展开介绍。
2026-01-30
SPSS随机值检验步骤 SPSS随机检验结果怎么看
很多人都听过IBM SPSS Statistics这款软件,它是数据分析的可靠搭档,不仅能轻松搞定数据的整理、转换,最后还能自动生成图表,对新手非常友好。对于经常需要进行学术研究、市场调研的用户来说是个常用的选择。今天我们就来说一下SPSS随机值检验步骤,SPSS随机检验结果怎么看的相关内容。
2026-01-30
SPSS为什么没有事后检验 SPSS事后检验结果怎么看
SPSS作为一款优秀的数据统计分析软件,深受数据统计分析人员的喜爱。SPSS之所以这么受欢迎,除了SPSS有很多的数据统计分析方法,可以帮助统计分析人员更高效的进行数据分析,还因为SPSS的人性化操作,一些刚入行的统计小白,也可以快速的掌握SPSS,接下来给大家详细介绍有关SPSS为什么没有事后检验,SPSS事后检验结果怎么看的相关内容。
2026-01-30
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: