发布时间:2020-12-07 11: 01: 38
IBM SPSS Statistics的二项分布检验,属于非参数检验中的一种分析方法,与参数检验不同,非参数检验是在总体方差未知的情况下,利用样本数据对总体分布等进行推断分析的方法。
而二项分布检验是用于二值取值样本数据的检验方法,通过验证样本数据是否服从概率为P的二项分布来推断样本所属总体是否符合概率为P的二项分布。接下来,我们会以一个检验产品合格率是否符合指定合格率的事例作为例子。
一、使用的数据类型
由于二项分布检验是用于二值取值的检验方法,在分析数据时,如图1所示,需使用数值型的数据。

为了更好地识别变量中数值的含义,如图2所示,可以在变量的值标签中,标注数值的值标签。在本例中,分别使用1、0代表合格、不合格。

二、应用二项分布检验
了解了二项分布使用的数据类型后,就可以打开IBM SPSS Statistics的二项分布检验功能,进一步了解其使用的方法。
如图3所示,依次单击分析-非参数检验-旧对话框-二项检验,打开二项检验的设置面板。

先简单了解一下二项检验中的选项含义:
1. 检验变量列表,即用于二项检验的变量
2. 定义二分法,用于定义二值的取值。如数据仅包含二值,可选择“从数据中获取”;如数据包含多个值,就需要设置“分割点”,将数据分为两组取值
3. 检验比例,即用于验证数据是否服从的概率P
接下来,我们使用示例数据实际操作一下。

1.选择变量
本例中检验的是抽样产品的合格率是否符合98%的标准,按照该检验目的,如图5所示,需将“是否合格”变量添加为检验变量列表,设置“从数据中获取”的方法,并将检验比例设置为“0.98”。

2.精确检验
由于二项分布属于非参数检验,需要进行精确检验的设置。一般情况下,保持默认的“仅渐进法”选项。蒙特卡洛法、精确法用于总体非渐进分布的情况。

3.选项设置
接着,设置统计数值以及缺失值的处理方法。为了更全面地分析数据,可同时勾选“描述”与“四分位数”。

4.结果解读
完成以上设置后,运行检验。
如图8所示,可以看到,样本的合格率为95%,与检验比例98%相比较,其显著性为0.02<0.05,表明当前样本的合格率与检验比例有显著差异,也就是说,当前样本的合格率不符合标准。

三、小结
综上所述,IBM SPSS Statistics的二项分布检验,是一种非参数的检验方法,用于推断样本所属总体是否符合概率为P的分布,适用于分析二值取值变量数据是否符合标准概率的情况。
作者:泽洋
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS如何做因子分析 SPSS因子载荷解释不清晰怎么办
每当我们在进行数据分析的工作时,因子分析是绕不开的一个话题。它在一组数据的分析中占据了重要的位置,主要用来检验不同变量之间是否存在共性的因子,而这些因子会影响数据的变量,例如从学生的考试成绩中判断是否存在共有的数据因子,这部分共有的数据因子对学生的成绩好坏会产生影响。下面我们以一款专业的数据分析软件SPSS为例,向大家介绍SPSS如何做因子分析,SPSS因子载荷解释不清晰怎么办的具体内容。...
阅读全文 >
SPSS显著性小于0.001的意义 SPSS显著性大于0.05怎么办
在使用SPSS软件进行数据分析工作的过程中,得到的显著性水平分析结果具有极为重要的作用。它能够帮助我们衡量变量之间是否存在真实的关联,或者不同组别数据之间是否存在实质性的差异。今天我们就一起来探讨关于SPSS显著性小于0.001的意义,SPSS显著性大于0.05怎么办的问题。...
阅读全文 >
SPSS如何计算z-score SPSS做z-score标准化
作为综合性的数字分析工具,SPSS不仅可以实现数值计算和比对的功能,还能够帮助研究者检验和提取出异常数值,也就是SPSS的检验功能,例如z-score的方法可以将所有数据转化为标准化数据,再依据z值标准筛选出异常数值。本文以SPSS如何计算z-score,SPSS做z-score标准化这两个问题为例,简单介绍一下SPSS的z-score方法如何操作。...
阅读全文 >
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。...
阅读全文 >