IBM SPSS Statistics 中文网站 > 使用技巧 > 使用SPSS神经网络模型预测结果

使用SPSS神经网络模型预测结果

发布时间:2021-11-08 11: 39: 36

神经网络模型是数据分析常用的模型,它广泛应用于众多领域,比如:医疗、人工智能、深度学习、语音、机器人等。它能通过现有数据经过神经网络模型训练得到训练模型,再将模型运用于预测数据集,进而得到预测结果,并且将预测趋势应用于各个领域。IBM SPSS Statistics同样具备神经网络模型,直接将需要分析数据导入IBM SPSS Statistics,然后进行简单配置即可使用神经网络模型。接下来就来看下如何使用SPSS神经网络模型预测结果。

  1. 数据集准备

打开SPSS软件,如果预测的数据集是事先准备好的,则直接点击左上角“文件”-“导入数据”;如果预测的数据集需要自己制作,则通过SPSS软件设置变量以及完成数据输入。这里为了演示,因此小编自己制作一个商品促销数据集。点击左下角“变量视图”窗口,并且确定变量。

图1 变量视图
图1 变量视图

点击左下角“数据视图”,在该窗口完成数据集的输入,这里总共输入24条数据集。

图2 数据集输入
图2 数据集输入

二、神经网络模型预测结果

点击顶部菜单栏“转换”-“计算变量”,打开计算变量窗口。然后我们需要设计名为incress的目标变量,并且将其标签设计为“促销前后消费额变化率”,最后设计该变量的数字表达式。

图3 目标变量
图3 目标变量

完成上述操作之后,我们可以看到数据集中增加了该变量,并且自动生成数据集。然后我们需要将该变量角色改为目标。

图4 角色改变
图4 角色改变

点击SPSS软件顶部菜单栏“分析”- “神经网络”-“径向基函数”。打开径向基函数窗口,我们可以看到顶部包括变量、分区、体系结构、输出、保存、导出、选项。其中“体系结构”和“选项”默认即可,下面将对其他五个菜单进行设计。

图5 径向基函数
图5 径向基函数

设计变量菜单。将incress(目标变量)加载到因变量选项框,将Class、Cost、Promotion、Before加载到协变量,并且协变量重新标度选择为标准差。

图6 变量菜单
图6 变量菜单

设计分区菜单和输出菜单。分区一般默认是训练数据为70%,检验数据为30%,当然你可以自己配置比率。

输出一般把所有选项都选中,这样有利于我们观看分析结果。

 

图7 分区和输出菜单
图7 分区和输出菜单

保存和导出菜单。保存需要勾选“保存每个因变量的预测或类别”,这样将会把预测值添加到数据集中。导出需要勾选“将突触权重估算值导出到XML文件,并且点击浏览将xml文件导出到本地。

 

图8 保存和导出菜单
图8 保存和导出菜单

完成神经网络径向基函数设置之后,可以看到自动生成输出文档,包括网络图、模型摘要、参数估算值、预测图、自变量重要性图等。

图9 网络模型图
图9 网络模型图

通过自变量重要性图可以分析出哪些因素对预测值的影响较大,重要性越明显则对预测值影响就越大,比如这里Promotion(促销费用)对商品促销影响最大。因此,通过提高商品促销费用,将能够增大商品促销量。

图10 自变量重要性
图10 自变量重要性

完成神经网络中的径向基函数之后,我们可以看到数据中增加了一列预测值的数据。通过该预测值,我们能够清楚哪些商品促销比较明显。

图11 预测数据
图11 预测数据

三、小结

上面通过使用SPSS软件从数据集的制作,并将该数据集通过神经网络模型预测得到预测结果,通过该预测值,我们能够提前了解那种因素对促销量影响较大,进而能够提高我们商品的销售量。相信这篇教程的讲解,你能够快速使用SPSS软件的神经网络模型应用各个领域。

作者:独行侠

展开阅读全文

标签:spss神经网络

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss均值怎么求 spss均值结果解释
平均值反映了一组数据的集中趋势,在经济社会各个领域都有非常广泛的应用。可以采用很多种方法求解平均值,如带有统计功能的计算器,Excel,SPSS等。关于SPSS均值怎么求,SPSS均值结果解释是什么,本文借助实例,向大家作简单的介绍。
2023-12-04
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: