IBM SPSS Statistics 中文网站 > 使用技巧 > 使用SPSS神经网络模型预测结果

使用SPSS神经网络模型预测结果

发布时间:2021/11/08 11:39:36

神经网络模型是数据分析常用的模型,它广泛应用于众多领域,比如:医疗、人工智能、深度学习、语音、机器人等。它能通过现有数据经过神经网络模型训练得到训练模型,再将模型运用于预测数据集,进而得到预测结果,并且将预测趋势应用于各个领域。IBM SPSS Statistics同样具备神经网络模型,直接将需要分析数据导入IBM SPSS Statistics,然后进行简单配置即可使用神经网络模型。接下来就来看下如何使用SPSS神经网络模型预测结果。

  1. 数据集准备

打开SPSS软件,如果预测的数据集是事先准备好的,则直接点击左上角“文件”-“导入数据”;如果预测的数据集需要自己制作,则通过SPSS软件设置变量以及完成数据输入。这里为了演示,因此小编自己制作一个商品促销数据集。点击左下角“变量视图”窗口,并且确定变量。

图1 变量视图
图1 变量视图

点击左下角“数据视图”,在该窗口完成数据集的输入,这里总共输入24条数据集。

图2 数据集输入
图2 数据集输入

二、神经网络模型预测结果

点击顶部菜单栏“转换”-“计算变量”,打开计算变量窗口。然后我们需要设计名为incress的目标变量,并且将其标签设计为“促销前后消费额变化率”,最后设计该变量的数字表达式。

图3 目标变量
图3 目标变量

完成上述操作之后,我们可以看到数据集中增加了该变量,并且自动生成数据集。然后我们需要将该变量角色改为目标。

图4 角色改变
图4 角色改变

点击SPSS软件顶部菜单栏“分析”- “神经网络”-“径向基函数”。打开径向基函数窗口,我们可以看到顶部包括变量、分区、体系结构、输出、保存、导出、选项。其中“体系结构”和“选项”默认即可,下面将对其他五个菜单进行设计。

图5 径向基函数
图5 径向基函数

设计变量菜单。将incress(目标变量)加载到因变量选项框,将Class、Cost、Promotion、Before加载到协变量,并且协变量重新标度选择为标准差。

图6 变量菜单
图6 变量菜单

设计分区菜单和输出菜单。分区一般默认是训练数据为70%,检验数据为30%,当然你可以自己配置比率。

输出一般把所有选项都选中,这样有利于我们观看分析结果。

 

图7 分区和输出菜单
图7 分区和输出菜单

保存和导出菜单。保存需要勾选“保存每个因变量的预测或类别”,这样将会把预测值添加到数据集中。导出需要勾选“将突触权重估算值导出到XML文件,并且点击浏览将xml文件导出到本地。

 

图8 保存和导出菜单
图8 保存和导出菜单

完成神经网络径向基函数设置之后,可以看到自动生成输出文档,包括网络图、模型摘要、参数估算值、预测图、自变量重要性图等。

图9 网络模型图
图9 网络模型图

通过自变量重要性图可以分析出哪些因素对预测值的影响较大,重要性越明显则对预测值影响就越大,比如这里Promotion(促销费用)对商品促销影响最大。因此,通过提高商品促销费用,将能够增大商品促销量。

图10 自变量重要性
图10 自变量重要性

完成神经网络中的径向基函数之后,我们可以看到数据中增加了一列预测值的数据。通过该预测值,我们能够清楚哪些商品促销比较明显。

图11 预测数据
图11 预测数据

三、小结

上面通过使用SPSS软件从数据集的制作,并将该数据集通过神经网络模型预测得到预测结果,通过该预测值,我们能够提前了解那种因素对促销量影响较大,进而能够提高我们商品的销售量。相信这篇教程的讲解,你能够快速使用SPSS软件的神经网络模型应用各个领域。

作者:独行侠

标签:神经网络spss
SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
SPSS数据分析难学吗 SPSS数据分析怎么进行筛选
SPSS是一款非常专业的数据统计软件,具备数据管理、统计分析、图形报表统计、数据挖掘以及预测分析等功能,同时SPSS具有功能强大、界面简洁友好、交互性好等特点,被广泛应用于教育学、心理学、问卷调查、医疗卫生等领域的数据研究。为了让大家更好的了解SPSS,下面给大家详细介绍一下,SPSS数据分析难学吗,以及SPSS数据分析怎么进行筛选相关内容。
2023-01-04
SPSS多因素相关性分析结果解读
多因素相关性分析可以帮助用户了解多因素以及因素协同对最终结果的影响程度,从而优化条件,达到更高的经济效益。利用专业的统计学软件SPSS,用户可以方便,快速的完成多因素相关性分析,下面以分析某化学反应中3个温度水平,5个压力水平反应的进行程度为例,向大家介绍SPSS多因素相关性分析的步骤以及结果解读。
2023-01-04
使用IBM SPSS Statistics进行数据验证!
随机计算能力的提高,对数据信息的需求也不断增长,同时收集数据越来越多,这就导致出现更多的数据输入错误。如果使用这些错误数据用于SPSS软件的预测模型来获取预测结果,会导致预测结果出现较大偏差,因此用于预测的数据需要保持干净。如果使用传统方法手动对预测数据进行验证,庞大的数据已经超人力所能处理的能力,SPSS软件就能实现自动化的数据验证,极大节省了人力物力。
2023-01-04
如何使用SPSS检测问卷效度和信度?
检验问卷的效度和信度是明确分析数据有效性的必要保障。在SPSS中,效度分析采用降维因子分析,信度检验通常采用“可靠性检验”。今天,我就向大家演示一下,使用SPSS检测问卷效度和信度的具体操作步骤。
2023-01-04
spss标签怎么输入范围 spss标签和值的区别
SPSS是一款专业的数据资料统计软件。很多刚开始接触SPSS数据统计软件的小伙伴很容易混淆标签和值标签,区分不了标签和值标签都有哪些不同,接下来本文将给大家详细讲解一下,SPSS标签怎么输入范围,以及SPSS标签和值的区别相关内容。
2022-12-26
SPSS标签值不正确 SPSS标签值怎么去除
在使用SPSS进行数据统计分析时,首先需要将分析数据导入到SPSS中,而导入进去的数据资料是需要对数据变量进行定义的,为了方便数据统计分析工作,在变量定义时会对标签值进行设置,而在此设置过程不可避免会遇到一些问题,接下来本文就和大家详细讲解一下,SPSS标签值不正确,以及SPSS标签值怎么去除的操作方法。
2022-12-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣