IBM SPSS Statistics 中文网站 > 使用技巧 > 使用SPSS判断问卷设计是否合理

使用SPSS判断问卷设计是否合理

发布时间:2021/12/16 11:07:25

   电脑型号:华为MagicBook

   系统:window10系统

   IBMSPSSStatistics版本:28

   关键词:SPSS

   要做实验进行数据分析,那么就需要提前准备数据,大多数获得数据的方式是进行问卷调查,得到问卷调查的数据后,再通过SPSS数据分析软件将数据导入。那么在编制问卷前,需要确定好主要的分析维度,然后根据主要维度设计问卷,最后通过SPSS依据各个维度进行分析,进而确定设计的调查问卷是否合理。

   一、案例的数据准备

   为了教大家如何对问卷调查进行多维度分析,判断问卷是否设计合理。这里以某公司探究顾客购买手机的原因为例,查阅相关资料,总的来说包括外观、配置、系统,然后再根据这三个维度设计。具体9个变量如下图所示,其中颜色、材质、屏幕尺寸以及形状是外观,CPU、内存、芯片是配置,安卓系统、苹果系统是系统。

图1数据展示
图1数据展示

   

   二、判定问卷设计是否合理

   判定问卷设计是否合理总共包括三个维度,第一维度是对手机外观维度分析,第二维度是对手机配置维度分析,第三维度是手机系统维度分析。为了演示,这里仅展示第一维度分析步骤,其他两个维度操作类似。

   点击SPSS顶部菜单栏“分析”-“降维”-“因子”,将第一维度的4个因素加载到变量文本框中。

图2因子分析
图2因子分析

   

   点击因子分析窗口右侧的描述按钮,统计模块保持默认,相关性矩阵勾选“KMO和Bartlett球形度检验”文本框。

图3描述
图3描述

   

   点击因子分析窗口右侧的提取按钮,显示模块手动勾选碎石图,其他模块均保持默认。

图4提取
图4提取

   

   点击因子分析窗口右侧的旋转按钮,方法模块勾选直接斜交法或者最大方差法,这里勾选直接斜交叉法。

图5旋转
图5旋转

   

   三、结果分析

   同样三个维度的结果分析都相似,这里仅展示第一维度的结果分析。首先我们看到KMO和巴特利特检验,如果KMO取样适切性量数小于0.6则不适合进行因素分析。可以看到第一维度的值为0.614大于0.6,说明可以进行因素分析。

图6KMO和巴特利特检验
图6KMO和巴特利特检验

   

   通过上面验证说明该维度可进行因素分析。总方差解释分析,4个问题抽取了2个因素,两个共同因素的累积量71.811%。

图7总方差解释
图7总方差解释

   

   从碎石图可以验证,特征值大于1的有两个,所以可以提取两个因素。

图8碎石图
图8碎石图

   

   结构矩阵图。因素1包括三个问题:材质、屏幕寸尺、形状(值大于0.6),因素2包括一个问题:颜色。

图9结构矩阵
图9结构矩阵

   

   从成分相关性矩阵来看,因素1和因素2相关性为0.043,代表相关性较低,因此最终因素1保留因素数量最多的问题,即保留三个问题。

图10成分相关性矩阵
图10成分相关性矩阵

   

   四、小结

   上述给大家讲解了如何使用SPSS多维度因素分析方法判断问卷设计是否合理,并且通过手机原因进行分析,将其分成三个维度,并且详细分析了第一维度,得到第一维度可以保留。大家可以通过类似分析,将剩余的两个维度进行分析,相信通过练习你一定能够学会判断问卷是否设计合理。

   

   作者:独行侠

标签:
SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣