SPSS > 使用技巧 > IBM SPSS Statistics常用的相关性分析方法

IBM SPSS Statistics常用的相关性分析方法

发布时间:2021-03-30 11: 21: 48

灵活运用IBM SPSS Statistics做数据的统计和分析是每个数据分析师都应该掌握的技能,这款软件为用户提供了全面的数据分析方法,可以解决我们在数据分析过程中遇到的各种难题。

接下来小编就为大家介绍一下SPSS相关性分析的方法。

1
图1:SPSS软件启动页

一、概述

相关关系就是现象间不严格的依存关系,即各变量之间不存在确定性的关系,按相关程度从强到弱,有完全相关、不完全相关、不相关之分;按变量之间的相关方向有正相关和负相关之分。

对于大部分分析对象来说,不完全相关的情况比较多。

相关性分析用于描述两个变量之间的密切程度,反映当一个变量被控制时,另一个变量的变化程度。

相关系数的取值范围在-1到1之间,绝对值越大,相关性越强。

二、分析方法

2
图2:相关性分析方法

在“分析”——“相关”列表中,SPSS为用户提供了三种相关性分析的方法,分别是积差相关、偏相关和距离相关。

1.积差相关

3
图3:积差相关

点击“双变量”,可以进入积差分析窗口。

将待分析的变量添加到右侧变量框中,比如说要分析学生的数学成绩和物理成绩有无相关性,就将这两个变量移入变量框中。

4
图4:选项

点击“选项”可设置统计内容和个案排除方法。

设置完成后点击“确定”,就可以开始积差分析了。

此类方法适用于正态分布的成对数据,变量最好是连续的、有线性关系。

2.偏相关

5
图5:偏相关窗口

偏相关分析可以在多个变量中剔除多余影响,仅分析特定两个变量之间的关系。

比如说要分析肺活量与身高的关系,就要排除体重的影响,这时需要将待分析的变量(身高和肺活量)移入上侧的变量框中,将体重移入下侧的控制框中。

这就是使用偏相关分析的基本方法:确认待分析变量,排除其他多余变量。

3.距离分析

当数据中有多个变量,每个变量都含有一定信息,但彼此无法重叠,偏相关的方法就不适用了,可以使用距离分析。

距离分析是一种广义的分类,即在分析过程中将距离小的变量分为一类,将距离大的个案归为其他类,进而为其他更复杂的数据分析打下基础。

6
图6:距离分析

同样以身高、体重、肺活量的检测数据作为案例,如果要分析哪些学生在这三个变量上的取值更为接近,可以使用距离分析。

将身高、体重和肺活量三个变量移入变量框中,下方的个案标注依据可以移入编号,也可以不移入,如果要移入变量,请确定已将其更改为字符串变量,否则无法移入。

7
图7:测量设置

选择“个案间”和“相似性”,点击“测量”,选择“区间”中的“皮尔逊相关”,点击“继续”——“确定”,SPSS将为我们完成距离相关性的分析。

三、小结

这里小编整理了三种在IBM SPSS Statistics中进行相关性分析的方法,分别是积差相关分析、偏相关分析和距离相关分析,其中前两者的应用概率更大一点,大家可以着重关注。

希望今天的分享可以对大家有所帮助!

作者:参商

展开阅读全文

标签:IBM SPSS Statistics相关性分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS怎么进行Logistic回归 SPSS Logistic回归分类结果不准确怎么办
在数据分析中,Logistic回归常常作为处理二分类因变量的方法,应用场景广泛。使用SPSS进行Logistic回归时,很多朋友常面临分类结果不准确的问题。今天我们将会详细介绍关于SPSS怎么进行Logistic回归,SPSS Logistic回归分类结果不准确怎么办的相关问题。
2025-12-10
SPSS如何随机抽取样本数据 SPSS如何随机选取70%的数据
我们在进行数据分析的工作时,有时为了减少人为误差,避免样本集中在某些特定群体上,所以需要随机抽取样本数据。SPSS既能帮助我们处理不同的数据样本,还可以指定选取相关的数据内容,做到更加精准的数据匹配。接下来给大家介绍SPSS如何随机抽取样本数据,SPSS如何随机选取70%的数据的具体内容。
2025-12-10
SPSS怎么做因子分析 SPSS因子载荷怎么看变量聚类结构
在经济学的领域中,市场如同“一只看不见的手”,在无形之中调节供求关系,并决定商品价格。如果我们将其具体到一件商品的话,究竟是什么因素在影响着它的价格呢?因子分析就可以为我们解答这个问题。在统计学领域,因子分析就是探究这只“看不见的手”的一种分析方法,它旨在揭示观测变量背后的潜在驱动力,正如数理逻辑对于数学成绩的影响,或者品牌形象对于产品销售情况的影响。总的来说,因子分析就是一种探究潜在变量(即潜在因子)与观测变量之间的相关性的方法。下面我以在SPSS中做因子分析的方法为例,给大家介绍一下关于SPSS怎么做因子分析,SPSS因子载荷怎么看变量聚类结构的相关内容。
2025-12-10
SPSS怎样绘制散点图 SPSS散点图趋势线不明显怎么办
散点图是常用的数据分析工具,它能够直观展现变量间的关联情况,还能帮助评估数据间可能存在的潜在关系。在数据分析中,散点图的应用十分广泛。而SPSS作为专业制图软件,可以轻松绘制各种散点图。今天我们将和大家一起探讨关于SPSS怎样绘制散点图,SPSS散点图趋势线不明显怎么办的相关内容。
2025-12-10
SPSS如何导入日期数据 SPSS导入日期数据后格式不对怎么调整
通过对不同时态下物体的发展状态进行分析,我们可以获得一条明确的发展脉络图,借由这份脉络图,我们可以预测事物未来的发展趋势。今天我就以SPSS如何导入日期数据,SPSS导入日期数据后格式不对怎么调整这两个问题为例,来向大家讲解一下SPSS中关于日期数据的知识。
2025-12-10
SPSS怎样生成描述性统计表 SPSS统计表结果格式不规范怎么办
在数据分析的过程中,描述性统计表是其中不可缺少的重要部分。由于能够准确地描述出需要分析的数据样本和统计内容,描述性的统计表在不同的统计场景中也有广泛的应用(例如对数据样本进行集中趋势分析和离散性分析)。所以随着精准数据分析的需求不断提升,越来越多的用户会选择采用描述性统计分析的方式来分析数据。下面以SPSS为例,给大家介绍SPSS怎样生成描述性统计表,SPSS统计表结果格式不规范怎么办的具体内容。
2025-12-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: