SPSS > 使用技巧 > 如何使用SPSS进行季节性分解

如何使用SPSS进行季节性分解

发布时间:2021-04-25 11: 38: 01

IBM SPSS Statistics是一个帮助用户进行各类完整数据分析的工具软件,自问世以来就受到各界人士的青睐,同时在更新换代中深度优化了自身功能,不断为用户带来惊喜。

接下来就为大家简单介绍一下如何使用IBM SPSS Statistics的季节性分解对数据进行分析处理。

一、概述

1.季节性分解

1
图1:季节性分解

在“分析”——“时间序列预测”中可以打开季节性分解的功能,最新版本SPSS 26中译为季节性分解,其他版本中有的被译为周期性分解。

周期性分解是将时间序列分解为周期性成分、组合趋势,以及循环成分和误差成分的一种方法,基本原理是比率移动平均值统计方法。

2.数据样本

2
图2:数据样本

以上图所示的数据样本为例,我们可以使用季节性分析对样本中的数据变量做出季节性的趋势分析。

二、操作步骤

1.定义日期和时间

3
图3:定义日期和时间

在进行时间序列的预测分析之前,首先需要进行变量的日期和时间定义,否则是无法使用时间序列预测分析功能的。

点击“数据”——“定义日期和时间”,进入定义日期对话框。

4
图4:对话框处理

本例中我们对年、月进行定义,数据样本中的日期是1989年1月到12月的数据,所以将日期就定义为1989年1-12月。

大家在执行这一步时要注意观察自己的数据样本的时间范围,完成后点击确定。

2.季节性分解设置

5
图5:季节性分解设置

接下来就可以根据图1所示的方法打开季节性分解对话框了,如果没有进行时间定义,这个对话框是打不开的哦。

在变量窗口中添加待分析的变量,我们将女装销售数据作为被分析变量添加进来。

模型类型选择乘法类型,表示将周期性成分与经过调整的周期性序列相乘;移动平均值权重选择“结束点按0.5加权”,这类方法适用于周期性是偶数的情况,如果是奇数,则应选择“所有点相等”。

勾选“显示个案列表”,SPSS会为用户输出每个观测量的分析结果。

3.保存设置

6
图6:保存设置

在保存对话框中,可以设置创建变量的方法,有三种方法,我们选择第一种,添加至文件,就会在日志中输出一些新的变量。

4.分析结果

7
图7:分析结果

分析完成后,我们可以根据结果列表进行近一步的分析讨论。上图是分析结果中的周期性分解表格,从中我们可以看到各类因子的变化趋势,根据季节因子的大小可以判断对总体影响较大的个别时间变量:1989年12月的女装销售对季节性分解的影响最大。

根据其他表格数据,还可以进行更多更全面的分析,这里不做赘述。

三、小结

这就是我们要分享的关于使用SPSS季节性分解操作的基本思路和操作方法了,希望可以对大家有所帮助。

更多软件资讯和案例分析欢迎进入IBM SPSS Statistics中文网站查看。

作者:参商

展开阅读全文

标签:IBM SPSS Statistics季节性分解

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: