IBM SPSS Statistics 中文网站 > 使用技巧 > 如何使用SPSS进行季节性分解

如何使用SPSS进行季节性分解

发布时间:2021-04-25 11: 38: 01

IBM SPSS Statistics是一个帮助用户进行各类完整数据分析的工具软件,自问世以来就受到各界人士的青睐,同时在更新换代中深度优化了自身功能,不断为用户带来惊喜。

接下来就为大家简单介绍一下如何使用IBM SPSS Statistics的季节性分解对数据进行分析处理。

一、概述

1.季节性分解

1
图1:季节性分解

在“分析”——“时间序列预测”中可以打开季节性分解的功能,最新版本SPSS 26中译为季节性分解,其他版本中有的被译为周期性分解。

周期性分解是将时间序列分解为周期性成分、组合趋势,以及循环成分和误差成分的一种方法,基本原理是比率移动平均值统计方法。

2.数据样本

2
图2:数据样本

以上图所示的数据样本为例,我们可以使用季节性分析对样本中的数据变量做出季节性的趋势分析。

二、操作步骤

1.定义日期和时间

3
图3:定义日期和时间

在进行时间序列的预测分析之前,首先需要进行变量的日期和时间定义,否则是无法使用时间序列预测分析功能的。

点击“数据”——“定义日期和时间”,进入定义日期对话框。

4
图4:对话框处理

本例中我们对年、月进行定义,数据样本中的日期是1989年1月到12月的数据,所以将日期就定义为1989年1-12月。

大家在执行这一步时要注意观察自己的数据样本的时间范围,完成后点击确定。

2.季节性分解设置

5
图5:季节性分解设置

接下来就可以根据图1所示的方法打开季节性分解对话框了,如果没有进行时间定义,这个对话框是打不开的哦。

在变量窗口中添加待分析的变量,我们将女装销售数据作为被分析变量添加进来。

模型类型选择乘法类型,表示将周期性成分与经过调整的周期性序列相乘;移动平均值权重选择“结束点按0.5加权”,这类方法适用于周期性是偶数的情况,如果是奇数,则应选择“所有点相等”。

勾选“显示个案列表”,SPSS会为用户输出每个观测量的分析结果。

3.保存设置

6
图6:保存设置

在保存对话框中,可以设置创建变量的方法,有三种方法,我们选择第一种,添加至文件,就会在日志中输出一些新的变量。

4.分析结果

7
图7:分析结果

分析完成后,我们可以根据结果列表进行近一步的分析讨论。上图是分析结果中的周期性分解表格,从中我们可以看到各类因子的变化趋势,根据季节因子的大小可以判断对总体影响较大的个别时间变量:1989年12月的女装销售对季节性分解的影响最大。

根据其他表格数据,还可以进行更多更全面的分析,这里不做赘述。

三、小结

这就是我们要分享的关于使用SPSS季节性分解操作的基本思路和操作方法了,希望可以对大家有所帮助。

更多软件资讯和案例分析欢迎进入IBM SPSS Statistics中文网站查看。

作者:参商

展开阅读全文

标签:IBM SPSS Statistics季节性分解

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: