发布时间:2021-11-11 15: 16: 44
SPSS决策树分析是基于树的分类模型,它将个案分为若干组,或根据自变量(预测变量)的值预测因变量(目标变量)的值。它有易于理解、可以应用于小数据集、能够处理多输出的问题、对缺失值不敏感、效率高等优点。下面就讲解下SPSS决策树分析使用教程。
一、数据集准备
本例使用的是信用风险识别数据(来源Kaggle的项目),包括int_rate(贷款利率)、grade(贷款等级)、home(住房性质)、employment(职业)等八个指标,我们将通过SPSS软件使用这八个指标对数据个案进行决策树分析。
二、决策树参数设置
点击SPSS主页顶部菜单栏“分析”-“分类”-“决策树”,即可打开决策树窗口。将flag加载到因变量文本框,将八个指标加载到自变量文本框。生长法选择CHAID(卡方自动交互检测),主要是利用卡方检测判断属性优先级。
点击右侧的“验证”按钮,按照训练样本70%,检测样本30%的分配数据。
为了方便结果的观察,点击右侧“保存”,勾选已保存的变量:终端节点数、预测值、预测概率、样本分配。
考虑到防止节点个案数太少而导致结果不准确,因此通过“条件”按钮,将最小个案树父节点设置为400、子节点设置为200。
三、结果分析
通过以上SPSS操作步骤,我们可以得到决策树分析的结果。
1、模型摘要
主要包括生长法、自变量、结果。在本案例中,经过筛选,最终将纳入的是fico_score指标,这意味着这个变量起到重要作用,实际业务操作过程中,我们应该重点关注这个指标。
2、风险
查看模型效果的重要依据之一,从风险表格中可以看到,训练估算0.061,表示在70%的训练样本中有6.1%的样本被错误归类。检验估算0.069,表示在30%的测试样本中有6.9%的样本被错误归类。
3、分类
查看模型效果的重要依据之一,从风险表格中可以看到,训练集93.9%,表示该模型正确率为93.9%。检验集表示在用训练集训练好的模型去检验测试集的数据,正确率为93.1%。
四、小结
以上是利用SPSS决策树模型对信用风险识别数据进行分析,首先我们从Kaggle的项目获取数据,然后通过SPSS决策树模型对数据进行分析,最后对得到的分析结果进行解析,可以看到整个分析结果还是非常不错,正确率非常高,也同时说明该模型具有一定的可用性。
作者:独行侠
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS做单因素Logistic回归分析 SPSS做单因素Logistic回归分析结果怎么看
使用分析软件对数据集进行分析时,可以选择不同的分析模型和运算方式。今天,我就以“SPSS做单因素Logistic回归分析,SPSS做单因素Logistic回归分析结果怎么看”这两个问题为例,来向大家介绍一下,如何在SPSS中使用单因素Logistic回归分析。...
阅读全文 >
SPSS分析方法有哪些怎么用 SPSS分析相关性怎么分析
SPSS软件为用户提供了丰富的数据分析工具,以便更深入地理解和解释数据。不同的数据类型有其不同的处理方式,本文将介绍SPSS分析方法有哪些怎么用,SPSS分析相关性怎么分析的相关内容。...
阅读全文 >
SPSS回归分析怎么看回归系数 SPSS回归分析怎么看显著性
回归分析是一种统计方法,目的在于探究复杂现象中变量的数量关系,并为人工干预提供科学依据。回归分析的应用非常广泛,例如分析血压与心脏病发病率之间的关系,分析居民收入和消费之间的关系,研究教育水平对生活水平的影响等。借助专业的统计分析软件IBM SPSS Statistics,用户可以快速完成回归分析,无需进行繁杂的计算。SPSS回归分析怎么看回归系数,SPSS回归分析怎么看显著性,本文结合实例向大家做简单的介绍。...
阅读全文 >
SPSS熵值法计算权重 SPSS熵值法操作过程
对于经常需要与数据分析这一任务打交道的用户来说,一款好用的数据分析工具是不可缺少的。这里给大家介绍一款我自己常用的数据分析软件—IBM SPSS,SPSS内置了许多专业的数据分析功能,而熵值计算就是其中的一种。接下来给大家介绍SPSS熵值法计算权重, SPSS熵值法操作过程的具体内容。...
阅读全文 >