SPSS > 使用技巧 > SPSS决策树分析使用教程

SPSS决策树分析使用教程

发布时间:2021-11-11 15: 16: 44

   SPSS决策树分析是基于树的分类模型,它将个案分为若干组,或根据自变量(预测变量)的值预测因变量(目标变量)的值。它有易于理解、可以应用于小数据集、能够处理多输出的问题、对缺失值不敏感、效率高等优点。下面就讲解下SPSS决策树分析使用教程。

   一、数据集准备

   本例使用的是信用风险识别数据(来源Kaggle的项目),包括int_rate(贷款利率)、grade(贷款等级)、home(住房性质)、employment(职业)等八个指标,我们将通过SPSS软件使用这八个指标对数据个案进行决策树分析。

图1数据展示
图1数据展示

   

   二、决策树参数设置

   点击SPSS主页顶部菜单栏“分析”-“分类”-“决策树”,即可打开决策树窗口。将flag加载到因变量文本框,将八个指标加载到自变量文本框。生长法选择CHAID(卡方自动交互检测),主要是利用卡方检测判断属性优先级。

图2决策树
图2决策树

   

   点击右侧的“验证”按钮,按照训练样本70%,检测样本30%的分配数据。

图3数据分配
图3数据分配

   

   为了方便结果的观察,点击右侧“保存”,勾选已保存的变量:终端节点数、预测值、预测概率、样本分配。

 图4设置已保存变量
 图4设置已保存变量

  

   考虑到防止节点个案数太少而导致结果不准确,因此通过“条件”按钮,将最小个案树父节点设置为400、子节点设置为200。

图5增长限制
图5增长限制

   

   三、结果分析

   通过以上SPSS操作步骤,我们可以得到决策树分析的结果。

   1、模型摘要

   主要包括生长法、自变量、结果。在本案例中,经过筛选,最终将纳入的是fico_score指标,这意味着这个变量起到重要作用,实际业务操作过程中,我们应该重点关注这个指标。

图6模型摘要
图6模型摘要

   

   2、风险

   查看模型效果的重要依据之一,从风险表格中可以看到,训练估算0.061,表示在70%的训练样本中有6.1%的样本被错误归类。检验估算0.069,表示在30%的测试样本中有6.9%的样本被错误归类。

图7风险
图7风险

   

   3、分类

   查看模型效果的重要依据之一,从风险表格中可以看到,训练集93.9%,表示该模型正确率为93.9%。检验集表示在用训练集训练好的模型去检验测试集的数据,正确率为93.1%。

图8分类
图8分类

   

   四、小结

   以上是利用SPSS决策树模型对信用风险识别数据进行分析,首先我们从Kaggle的项目获取数据,然后通过SPSS决策树模型对数据进行分析,最后对得到的分析结果进行解析,可以看到整个分析结果还是非常不错,正确率非常高,也同时说明该模型具有一定的可用性。

   

  作者:独行侠

展开阅读全文

标签:SPSS决策树分析SPSS决策树分析SPSS决策树

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS为什么没有事后检验 SPSS事后检验结果怎么看
SPSS作为一款优秀的数据统计分析软件,深受数据统计分析人员的喜爱。SPSS之所以这么受欢迎,除了SPSS有很多的数据统计分析方法,可以帮助统计分析人员更高效的进行数据分析,还因为SPSS的人性化操作,一些刚入行的统计小白,也可以快速的掌握SPSS,接下来给大家详细介绍有关SPSS为什么没有事后检验,SPSS事后检验结果怎么看的相关内容。
2026-01-30
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: