IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS数据预处理如何排序与分列

SPSS数据预处理如何排序与分列

发布时间:2021/10/28 11:41:30

   在正式分析数据前,我们可能需要对导入IBM SPSSS tatistic中的数据作一些预处理,比如数据排序、缺失值处理、变量编码、拆分变量值等,以符合不同分析方法的数据要求。本文将会介绍SPSS数据预处理如何排序与分列。

   一、数据排序

   数据排序是很常用的数据预处理方法,可帮助快速发现一些数据分布规律、缺失值、最大值、最小值等。

   以图1所示的店铺销售数据为例,我们希望按照客流量、销售额、销售量的数值大小排序数据。

图1:店铺数据
图1:店铺数据

   具体的操作是,依次单击IBMSPSSStatistic的数据-个案排序选项。

图2:个案排序
图2:个案排序

   在个案排序设置面板中,将客流量、销售额、销售量变量依次添加到排序依据中,变量排位越靠前,越优先用于排序。同时,设置“升序”的排序顺序。

图3:排序依据
图3:排序依据

   完成以上设置后,返回到数据集,即可观察到数据已按照变量的优先次序进行升序排序。同时,我们还能观察到账号118的客流量出现了缺失值。

图4:完成个案排序
图4:完成个案排序

   对于缺失值,可使用IBMSPSSStatistic的“替换缺失值”功能,进行缺失值的计算替换。

图5:替换缺失值
图5:替换缺失值

   对于缺失值,可使用序列均值、临近点的平均值、临近点的中间值等方法进行替换值的计算。

图6:替代缺失值方法
图6:替代缺失值方法

   替换值会作为一个新变量添加到原数据集中,我们可根据计算结果判断是否使用该替换值。

图7:生成新变量
图7:生成新变量

   三、数据分列

   在处理时间序列数据时,经常会遇到如图8所示的,将年份与月份合并的变量,此时,就可能需要运用到SPPS的分列功能,将变量中的年份与月份数据拆开使用。

图8:季度CPI数据
图8:季度CPI数据

   与Excel的拆分不同,IBMSPSSStatistic是运用函数进行变量分列的。具体的操作是,依次单击转换-计算变量选项。

图9:计算变量
图9:计算变量

   如图10所示,在目标变量中输入新分列变量名称,然后再单击其下方的“类型和标签”按钮,将变量类型定义为字符串。这一步很重要,因分列函数仅能识别字符串变量。

图10:变量类型与标签
图10:变量类型与标签

   然后,如图11所示,在右侧函数中依次选择“字符串”、“Char.Substr”函数。Substr函数可返回特定位置的字符。

图11:Substr函数
图11:Substr函数

   如图12所示,按照函数的参数设置说明,将函数编辑为月份1=Char.Substr(月份,1,4),即可返回原月份变量前4个字符串。

图12:设置函数参数
图12:设置函数参数

   完成以上设置后,如图13所示,即可在原数据表中得到一个新的变量,将原月份变量的年份数据拆分出来。

图13:设置函数参数
图13:设置函数参数

   四、小结

   以上就是SPSS数据预处理如何排序与分列的内容了,综上所述,通过使用IBM SPSSS tatistic的个案排序、计算变量功能可实现数据排序、数据分列的预处理操作,以满足不同分析方法的数据形式需求。除此之外,我们还可以使用IBMS PSSS tatistic的重新编码、转置等功能,进行更加高级的数据预处理,如需了解更多的内容,可前往SPSS中文网站。

   

  作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
SPSS数据分析难学吗 SPSS数据分析怎么进行筛选
SPSS是一款非常专业的数据统计软件,具备数据管理、统计分析、图形报表统计、数据挖掘以及预测分析等功能,同时SPSS具有功能强大、界面简洁友好、交互性好等特点,被广泛应用于教育学、心理学、问卷调查、医疗卫生等领域的数据研究。为了让大家更好的了解SPSS,下面给大家详细介绍一下,SPSS数据分析难学吗,以及SPSS数据分析怎么进行筛选相关内容。
2023-01-04
SPSS多因素相关性分析结果解读
多因素相关性分析可以帮助用户了解多因素以及因素协同对最终结果的影响程度,从而优化条件,达到更高的经济效益。利用专业的统计学软件SPSS,用户可以方便,快速的完成多因素相关性分析,下面以分析某化学反应中3个温度水平,5个压力水平反应的进行程度为例,向大家介绍SPSS多因素相关性分析的步骤以及结果解读。
2023-01-04
使用IBM SPSS Statistics进行数据验证!
随机计算能力的提高,对数据信息的需求也不断增长,同时收集数据越来越多,这就导致出现更多的数据输入错误。如果使用这些错误数据用于SPSS软件的预测模型来获取预测结果,会导致预测结果出现较大偏差,因此用于预测的数据需要保持干净。如果使用传统方法手动对预测数据进行验证,庞大的数据已经超人力所能处理的能力,SPSS软件就能实现自动化的数据验证,极大节省了人力物力。
2023-01-04
如何使用SPSS检测问卷效度和信度?
检验问卷的效度和信度是明确分析数据有效性的必要保障。在SPSS中,效度分析采用降维因子分析,信度检验通常采用“可靠性检验”。今天,我就向大家演示一下,使用SPSS检测问卷效度和信度的具体操作步骤。
2023-01-04
spss标签怎么输入范围 spss标签和值的区别
SPSS是一款专业的数据资料统计软件。很多刚开始接触SPSS数据统计软件的小伙伴很容易混淆标签和值标签,区分不了标签和值标签都有哪些不同,接下来本文将给大家详细讲解一下,SPSS标签怎么输入范围,以及SPSS标签和值的区别相关内容。
2022-12-26
SPSS标签值不正确 SPSS标签值怎么去除
在使用SPSS进行数据统计分析时,首先需要将分析数据导入到SPSS中,而导入进去的数据资料是需要对数据变量进行定义的,为了方便数据统计分析工作,在变量定义时会对标签值进行设置,而在此设置过程不可避免会遇到一些问题,接下来本文就和大家详细讲解一下,SPSS标签值不正确,以及SPSS标签值怎么去除的操作方法。
2022-12-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣