SPSS > 使用技巧 > SPSS数据预处理如何排序与分列

SPSS数据预处理如何排序与分列

发布时间:2021-10-28 11: 41: 30

   在正式分析数据前,我们可能需要对导入IBM SPSSS tatistic中的数据作一些预处理,比如数据排序、缺失值处理、变量编码、拆分变量值等,以符合不同分析方法的数据要求。本文将会介绍SPSS数据预处理如何排序与分列。

   一、数据排序

   数据排序是很常用的数据预处理方法,可帮助快速发现一些数据分布规律、缺失值、最大值、最小值等。

   以图1所示的店铺销售数据为例,我们希望按照客流量、销售额、销售量的数值大小排序数据。

图1:店铺数据
图1:店铺数据

   具体的操作是,依次单击IBMSPSSStatistic的数据-个案排序选项。

图2:个案排序
图2:个案排序

   在个案排序设置面板中,将客流量、销售额、销售量变量依次添加到排序依据中,变量排位越靠前,越优先用于排序。同时,设置“升序”的排序顺序。

图3:排序依据
图3:排序依据

   完成以上设置后,返回到数据集,即可观察到数据已按照变量的优先次序进行升序排序。同时,我们还能观察到账号118的客流量出现了缺失值。

图4:完成个案排序
图4:完成个案排序

   对于缺失值,可使用IBMSPSSStatistic的“替换缺失值”功能,进行缺失值的计算替换。

图5:替换缺失值
图5:替换缺失值

   对于缺失值,可使用序列均值、临近点的平均值、临近点的中间值等方法进行替换值的计算。

图6:替代缺失值方法
图6:替代缺失值方法

   替换值会作为一个新变量添加到原数据集中,我们可根据计算结果判断是否使用该替换值。

图7:生成新变量
图7:生成新变量

   三、数据分列

   在处理时间序列数据时,经常会遇到如图8所示的,将年份与月份合并的变量,此时,就可能需要运用到SPPS的分列功能,将变量中的年份与月份数据拆开使用。

图8:季度CPI数据
图8:季度CPI数据

   与Excel的拆分不同,IBMSPSSStatistic是运用函数进行变量分列的。具体的操作是,依次单击转换-计算变量选项。

图9:计算变量
图9:计算变量

   如图10所示,在目标变量中输入新分列变量名称,然后再单击其下方的“类型和标签”按钮,将变量类型定义为字符串。这一步很重要,因分列函数仅能识别字符串变量。

图10:变量类型与标签
图10:变量类型与标签

   然后,如图11所示,在右侧函数中依次选择“字符串”、“Char.Substr”函数。Substr函数可返回特定位置的字符。

图11:Substr函数
图11:Substr函数

   如图12所示,按照函数的参数设置说明,将函数编辑为月份1=Char.Substr(月份,1,4),即可返回原月份变量前4个字符串。

图12:设置函数参数
图12:设置函数参数

   完成以上设置后,如图13所示,即可在原数据表中得到一个新的变量,将原月份变量的年份数据拆分出来。

图13:设置函数参数
图13:设置函数参数

   四、小结

   以上就是SPSS数据预处理如何排序与分列的内容了,综上所述,通过使用IBM SPSSS tatistic的个案排序、计算变量功能可实现数据排序、数据分列的预处理操作,以满足不同分析方法的数据形式需求。除此之外,我们还可以使用IBMS PSSS tatistic的重新编码、转置等功能,进行更加高级的数据预处理,如需了解更多的内容,可前往SPSS中文网站。

   

  作者:泽洋

展开阅读全文

标签:SPSS数据预处理SPSS数据预处理SPSS数据排序

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS生存曲线数据怎么录入 SPSS怎么做生存曲线
在数据分析的领域中,生存分析一直是一个重要的概念,它在生物医学领域有着广泛的应用。而在SPSS中录入生存曲线数据,是我们进行生存分析的第一步,也是关键的一步,生存曲线的数据与后续的数据分析有着重要的关联。SPSS软件在其中可以帮助我们快速进行数据分析和曲线绘制,接下来给大家介绍SPSS生存曲线数据怎么录入,SPSS怎么做生存曲线的具体内容。
2025-11-25
SPSS如何处理缺失值 SPSS数据清理与替换方法
每当我们需要处理一组数据的缺失值时,就需要用到专业的数据分析软件。在数据分析软件的这个领域中,SPSS既能够帮助我们处理数据样本的缺失值,还可以针对数据的缺失值对样本进行整体替换与填补。接下来给大家介绍SPSS如何处理缺失值,SPSS数据清理与替换方法的具体内容。
2025-11-25
SPSS多层线性模型如何构建 SPSS多层线性模型层级变量设置
每当在进行数据分析时,许多小伙伴可能都会遇到构建多层线性模型的情况。构建多层线性模型能扩大已测量的数据样本,使数据涵盖更多内容,进而更加有说服力。而在进行多层线性模型构建时,一款好用的数据分析软件是不可缺少的,这里给大家介绍我自己常用的SPSS数据分析软件,同时以它为例向大家介绍SPSS多层线性模型如何构建,SPSS多层线性模型层级变量设置的具体内容。
2025-11-25
SPSS怎样进行聚类分析 SPSS聚类中心不稳定怎么解决
对于经常需要与数据分析打交道的小伙伴来说,想必对聚类分析这一分析操作肯定是不陌生的。聚类分析指的是收集相似的数据样本,并在相似数据样本的基础之上收集信息来进行分类,下面以SPSS为例,向大家介绍SPSS怎样进行聚类分析,SPSS聚类中心不稳定怎么解决的具体内容。
2025-11-25
SPSS怎么绘制柱状图 SPSS图表编辑器使用技巧
由于数据分析领域经常需要庞大的数据样本,所以将数据图像化便是其中的一项重要任务。因此绘制数据分析图便成为了其中的关键操作。SPSS作为一款专业的数据分析软件,不仅可以用它来处理日常的各种数据分析内容,还能够完成数据图像的绘制和图表的编译。接下来给大家介绍SPSS怎么绘制柱状图,SPSS图表编辑器使用技巧的具体内容。
2025-11-25
SPSS如何做因子分析 SPSS因子载荷解释不清晰怎么办
每当我们在进行数据分析的工作时,因子分析是绕不开的一个话题。它在一组数据的分析中占据了重要的位置,主要用来检验不同变量之间是否存在共性的因子,而这些因子会影响数据的变量,例如从学生的考试成绩中判断是否存在共有的数据因子,这部分共有的数据因子对学生的成绩好坏会产生影响。下面我们以一款专业的数据分析软件SPSS为例,向大家介绍SPSS如何做因子分析,SPSS因子载荷解释不清晰怎么办的具体内容。
2025-11-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: