SPSS > 使用技巧 > SPSS数据预处理如何排序与分列

SPSS数据预处理如何排序与分列

发布时间:2021-10-28 11: 41: 30

   在正式分析数据前,我们可能需要对导入IBM SPSSS tatistic中的数据作一些预处理,比如数据排序、缺失值处理、变量编码、拆分变量值等,以符合不同分析方法的数据要求。本文将会介绍SPSS数据预处理如何排序与分列。

   一、数据排序

   数据排序是很常用的数据预处理方法,可帮助快速发现一些数据分布规律、缺失值、最大值、最小值等。

   以图1所示的店铺销售数据为例,我们希望按照客流量、销售额、销售量的数值大小排序数据。

图1:店铺数据
图1:店铺数据

   具体的操作是,依次单击IBMSPSSStatistic的数据-个案排序选项。

图2:个案排序
图2:个案排序

   在个案排序设置面板中,将客流量、销售额、销售量变量依次添加到排序依据中,变量排位越靠前,越优先用于排序。同时,设置“升序”的排序顺序。

图3:排序依据
图3:排序依据

   完成以上设置后,返回到数据集,即可观察到数据已按照变量的优先次序进行升序排序。同时,我们还能观察到账号118的客流量出现了缺失值。

图4:完成个案排序
图4:完成个案排序

   对于缺失值,可使用IBMSPSSStatistic的“替换缺失值”功能,进行缺失值的计算替换。

图5:替换缺失值
图5:替换缺失值

   对于缺失值,可使用序列均值、临近点的平均值、临近点的中间值等方法进行替换值的计算。

图6:替代缺失值方法
图6:替代缺失值方法

   替换值会作为一个新变量添加到原数据集中,我们可根据计算结果判断是否使用该替换值。

图7:生成新变量
图7:生成新变量

   三、数据分列

   在处理时间序列数据时,经常会遇到如图8所示的,将年份与月份合并的变量,此时,就可能需要运用到SPPS的分列功能,将变量中的年份与月份数据拆开使用。

图8:季度CPI数据
图8:季度CPI数据

   与Excel的拆分不同,IBMSPSSStatistic是运用函数进行变量分列的。具体的操作是,依次单击转换-计算变量选项。

图9:计算变量
图9:计算变量

   如图10所示,在目标变量中输入新分列变量名称,然后再单击其下方的“类型和标签”按钮,将变量类型定义为字符串。这一步很重要,因分列函数仅能识别字符串变量。

图10:变量类型与标签
图10:变量类型与标签

   然后,如图11所示,在右侧函数中依次选择“字符串”、“Char.Substr”函数。Substr函数可返回特定位置的字符。

图11:Substr函数
图11:Substr函数

   如图12所示,按照函数的参数设置说明,将函数编辑为月份1=Char.Substr(月份,1,4),即可返回原月份变量前4个字符串。

图12:设置函数参数
图12:设置函数参数

   完成以上设置后,如图13所示,即可在原数据表中得到一个新的变量,将原月份变量的年份数据拆分出来。

图13:设置函数参数
图13:设置函数参数

   四、小结

   以上就是SPSS数据预处理如何排序与分列的内容了,综上所述,通过使用IBM SPSSS tatistic的个案排序、计算变量功能可实现数据排序、数据分列的预处理操作,以满足不同分析方法的数据形式需求。除此之外,我们还可以使用IBMS PSSS tatistic的重新编码、转置等功能,进行更加高级的数据预处理,如需了解更多的内容,可前往SPSS中文网站。

   

  作者:泽洋

展开阅读全文

标签:SPSS数据预处理SPSS数据预处理SPSS数据排序

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS如何随机抽取样本数据 SPSS如何随机选取70%的数据
我们在进行数据分析的工作时,有时为了减少人为误差,避免样本集中在某些特定群体上,所以需要随机抽取样本数据。SPSS既能帮助我们处理不同的数据样本,还可以指定选取相关的数据内容,做到更加精准的数据匹配。接下来给大家介绍SPSS如何随机抽取样本数据,SPSS如何随机选取70%的数据的具体内容。
2025-12-10
SPSS怎么做因子分析 SPSS因子载荷怎么看变量聚类结构
在经济学的领域中,市场如同“一只看不见的手”,在无形之中调节供求关系,并决定商品价格。如果我们将其具体到一件商品的话,究竟是什么因素在影响着它的价格呢?因子分析就可以为我们解答这个问题。在统计学领域,因子分析就是探究这只“看不见的手”的一种分析方法,它旨在揭示观测变量背后的潜在驱动力,正如数理逻辑对于数学成绩的影响,或者品牌形象对于产品销售情况的影响。总的来说,因子分析就是一种探究潜在变量(即潜在因子)与观测变量之间的相关性的方法。下面我以在SPSS中做因子分析的方法为例,给大家介绍一下关于SPSS怎么做因子分析,SPSS因子载荷怎么看变量聚类结构的相关内容。
2025-12-10
SPSS怎样绘制散点图 SPSS散点图趋势线不明显怎么办
散点图是常用的数据分析工具,它能够直观展现变量间的关联情况,还能帮助评估数据间可能存在的潜在关系。在数据分析中,散点图的应用十分广泛。而SPSS作为专业制图软件,可以轻松绘制各种散点图。今天我们将和大家一起探讨关于SPSS怎样绘制散点图,SPSS散点图趋势线不明显怎么办的相关内容。
2025-12-10
SPSS如何导入日期数据 SPSS导入日期数据后格式不对怎么调整
通过对不同时态下物体的发展状态进行分析,我们可以获得一条明确的发展脉络图,借由这份脉络图,我们可以预测事物未来的发展趋势。今天我就以SPSS如何导入日期数据,SPSS导入日期数据后格式不对怎么调整这两个问题为例,来向大家讲解一下SPSS中关于日期数据的知识。
2025-12-10
SPSS怎样生成描述性统计表 SPSS统计表结果格式不规范怎么办
在数据分析的过程中,描述性统计表是其中不可缺少的重要部分。由于能够准确地描述出需要分析的数据样本和统计内容,描述性的统计表在不同的统计场景中也有广泛的应用(例如对数据样本进行集中趋势分析和离散性分析)。所以随着精准数据分析的需求不断提升,越来越多的用户会选择采用描述性统计分析的方式来分析数据。下面以SPSS为例,给大家介绍SPSS怎样生成描述性统计表,SPSS统计表结果格式不规范怎么办的具体内容。
2025-12-10
SPSS生存曲线数据怎么录入 SPSS怎么做生存曲线
在数据分析的领域中,生存分析一直是一个重要的概念,它在生物医学领域有着广泛的应用。而在SPSS中录入生存曲线数据,是我们进行生存分析的第一步,也是关键的一步,生存曲线的数据与后续的数据分析有着重要的关联。SPSS软件在其中可以帮助我们快速进行数据分析和曲线绘制,接下来给大家介绍SPSS生存曲线数据怎么录入,SPSS怎么做生存曲线的具体内容。
2025-11-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: