SPSS > 使用技巧 > 如何用SPSS计算个人BMI值?

如何用SPSS计算个人BMI值?

发布时间:2021-03-19 14: 58: 55

BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。

一、BMI计算

如果只有一两条数据,我们可以直接计算,但若是几十几百条数据,就需要使用SPSS来辅助计算了。

1、首先打开我们提前准备好的统计数据;

图一:统计数据

2、点击SPSS主界面菜单栏的转换按钮;

图二:转换选项

3、在下拉菜单中选择计算变量;

图三:计算变量

4、然后在弹出的窗口中输入目标变量“BMI”;

图四:目标变量

5、在弹窗右侧函数组中选择算数函数组;

图五:选择函数组

6、选择下方函数框中“Rnd”(取整)函数;

图六:选择函数

7、点击左侧箭头图标将函数添加至计算框;

图七:添加运算符

8、输入计算公式(BMI=体重(Kg)/(身高(m))²);

1)输入被除数(体重);

图八:输入被除数

2)输入除数(身高);

图九:输入除数

3)键入乘方;

图十:乘方

9、公式输入完成后,点击弹窗下方的确认按钮;

图十一:确认

至此,我们就得到了所有人的BMI值。

图十二:BMI值

二、BMI判断

有了个人BMI值,接下来就是来就是根据BMI来判断身体是否健康了。

1、首先点击主菜单中的转换按钮,然后在下拉菜单中选择“重新编码为不同变量”;

图十三:转换变量

2、选择变量BMI,通过右侧箭头图标将其导入转换框中;

图十四:导入变量

3、在输出变量栏输入输出变量名称(评判结果),然后点击下方的“旧值与新值”按钮;

图十五:输出变量

4、在弹窗旧值区域输入正常的BMI范围;

图十六:确定范围

5、点击弹窗新值输入框给正常BMI范围赋值,并添加至下方变量框;

图十七:赋值

6、按第五步依次给其他范围BMI赋值,然后点击继续;

图十八:其他赋值

7、回到变量转换窗口,点击变化量,然后确认;

图十九:确认转换

8、赋值完成。

这时,我们可以看到多出了一个新的变量,通过观察数值,我们就可以确定每个人的身体健康状况了。

图二十:判断完成

三、总结

以上就是BMI值的计算方法及判断流程了,在计算BMI值时,我们对其进行了取整处理,便于观察结果,大家也可按个人需要选择是否保留小数。

作者:李昆

展开阅读全文

标签:IBM SPSS StatisticsBMI值

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14
SPSS残差正态怎样检验 SPSS残差正态QQ图应如何判读
每当我们在对采集的数据样本进行回归分析或者方差检验的时候,都需要遵守数据检验的一个前提:模型的残差需要服从近似正态分布的规律。所以说残差的正态分布相当于整个数据样本的底座和基石,没有正态分布的规律,就无法进行后续的正态检验和分析。而在使用SPSS进行残差正态分析的时候,同样会面临如何检验以及判读QQ图的情况。下面给大家介绍SPSS残差正态怎样检验,SPSS残差正态QQ图应如何判读的具体内容。
2026-01-14
SPSS曲线回归分析的基本原理 SPSS曲线回归分析结果解读
我们在对一组数据样本进行分析的时候,曲线回归分析是其中不可缺少的一个环节。曲线回归分析作为数据分析中的一项重要操作,主要在评估数据样本之间的关联度以及相互关系时有着广泛应用,这样可以得到数据样本的整体变化趋势以及评估未来的数据发展周期(例如分析销售额和营销成本之间的关系)。而曲线回归的结果对数据样本测算同样有着重要意义,下面以SPSS为例,给大家介绍SPSS曲线回归分析的基本原理,SPSS曲线回归分析结果解读的具体内容。
2026-01-08
SPSS怎么导出结果为Excel SPSS表格导出后乱码怎么办
SPSS既能够帮助我们进行专业的数据分析(包含了回归分析、线性模型分析和缺失值分析等),又可以把数据分析后得到的报告结果进行保存或导出,便于数据分析结果的引用。下面就以SPSS为例,向大家介绍SPSS怎么导出结果为Excel,SPSS表格导出后乱码怎么办的具体内容。
2026-01-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: