SPSS > 使用技巧 > spss缺失值分析步骤 spss缺失值分析结果怎么看

spss缺失值分析步骤 spss缺失值分析结果怎么看

发布时间:2022-11-24 14: 21: 03

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。

一、SPSS缺失值分析步骤

由于非随机缺失值所在变量与自身取值有关(例如,高收入群体往往不愿意透露收入水平),或者与其他变量有关(例如,年龄项目缺失值可能与性别有关,因为很多女性不愿透露年龄),所以非随机缺失值难以进行估计分析。因此缺失值分析一般针对随机缺失和完全随机缺失类型。

图1是某个群体男性身高体重统计表,我们以此为例,使用SPSS进行缺失值分析。

部分数据缺失的数据表
图1 部分数据缺失的数据表

点击【分析】,【缺失值分析】,弹出图2所示的对话框,将“身高”和“体重”指定为“定量变量”,勾选“EM”。

进入缺失值分析界面
图2 进入缺失值分析界面

点击【模式】,勾选“个案表(按缺失值模式分组)”,将“变量-以下对象的缺失模式”指定为“以下对象的附加信息”,如图3所示,点击继续。

启用显示个案表
图3 启用显示个案表

点击【描述】,勾选“单变量统计”,“使用由指示符变量构成的组执行t检验”,“生成分类变量和指示符变量的交叉表”,点击继续。点击确定即可。

输出描述统计结果
图4 输出描述统计结果

以上就是SPSS缺失值分析的基本步骤,EM方法分析结果是怎样的?如何进行解读?我们在第二小节中向大家介绍。

二、SPSS缺失值分析结果怎么看

首先查看独立方差t检验,身高存在时,体重均值为67.588,身高缺失时,体重均值为62.000,体重存在时,身高均值为170.627,体重缺失时,体重均值为168.067,粗略来看,身高和体重未相互影响,提示两者为完全独立变量,但此时不能完全确定,还要结合EM相关性检验结果。

独立方差t检验结果
图5 独立方差t检验结果

继续查看EM相关性表格,利特尔MCAR检验,其卡方值为4.332,显著性为0.115,大于0.05,此时认为缺失值为完全随机缺失类型,如果小于0.05,提示数据缺失为随机缺失类型。

EM相关性结果表
图6 EM相关性结果表

SPSS缺失值分析步骤是怎样的,需要用户在分析功能中找到缺失值分析功能,按第一小节步骤操作即可。SPSS缺失值分析结果怎么看,我们需要关注EM相关性结果,利特尔MCAR检验结果显著性大于0.05,提示缺失变量为完全随机缺失类型,小于0.05,提示变量为随机缺失类型。

 

作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS交叉验证方法怎么用 SPSS交叉分析怎么理解
交叉验证是一种多维度的数据分析法,可以将多个变量进行交叉组合,生成二维或多维分析表格,以此展现出变量之间的关联性以及潜在规律。今天我就以SPSS交叉验证方法怎么用,SPSS交叉分析怎么理解这两个问题为例,来向大家讲解一下SPSS中关于交叉验证法的相关知识。
2025-09-18
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。
2025-09-18
SPSS数据透视表在哪 SPSS数据透视表怎么做
在数据分析领域,我们如何查看多种数据的汇总情况呢?SPSS的图表编辑功能可以计算、分析、统计各类数值,并用三线透视表的方式来清晰呈现测量结果,这就需要研究者熟悉图表操作的功能,能够对表格的初始格式进行修改与调整。本文以SPSS数据透视表在哪,SPSS数据透视表怎么做这两个问题为例,给大家介绍一下SPSS数据透视表的相关知识。
2025-09-18
SPSS自定义表格怎么设计 SPSS自定义表格行列表头设置方法
对于进行数据分析的研究者来说,SPSS设置的初始表格需要在格式上进行进一步的调整和规范,也就是需要SPSS用户自行设置和修改图表格式,借助SPSS图表编辑的工具来操作。本文以SPSS自定义表格怎么设计,SPSS自定义表格行列表头设置方法这两个问题为例,给大家介绍一下SPSS自定义表格的相关知识。
2025-09-18
SPSS数据加权有什么用 SPSS数据加权与不加权的区别
数据加权是数据分析过程中非常实用的一种数据分析技巧,根据每一项个案要素的重要程度,合理调整它们的总体占比,随后再进行计算,就能得到更加精准的分析结果。今天我就以SPSS数据加权有什么用,SPSS数据加权与不加权的区别这两个问题为例,来向大家讲解一下数据加权的相关知识。
2025-09-18
SPSS线性回归如何构建 SPSS线性回归自变量筛选方法
在数据分析领域,当自变量类型为定序或者定距变量的时候,我们可以借助SPSS线性回归的方法来建立变量之间函数变化关系的模型,这适用于自变量与因变量呈线性关系的情况,有助于后续的数据划分和定义。本文以SPSS线性回归如何构建,SPSS线性回归自变量筛选方法这两个问题为例,给大家介绍一下SPSS线性回归的相关知识。
2025-09-18

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: