IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS多因素相关性分析结果解读

SPSS多因素相关性分析结果解读

发布时间:2023-01-04 14: 37: 59

品牌型号:联想 扬天S4150

系统:Windows7 旗舰版

软件版本:IBM SPSS 25试用版

 

多因素相关性分析可以帮助用户了解多因素以及因素协同对最终结果的影响程度,从而优化条件,达到更高的经济效益。利用专业的统计学软件SPSS,用户可以方便,快速的完成多因素相关性分析,下面以分析某化学反应中3个温度水平,5个压力水平反应的进行程度为例,向大家介绍SPSS多因素相关性分析的步骤以及结果解读。

 

1.录入数据文件

打开SPSS,界面如图1所示。点击文件,新建,数据,新建一个SPSS数据文件。

图1新建数据文件

 

如图2所示,打开变量视图界面,设置变量名称,为了便于后续理解,将温度和压力设置为字符串格式,三个温度水平分别为T1,T2,T3,五个压力水平分别为P1,P2,P3,P4,P5,将反应产率设置为数值格式。

图2设置变量属性

 

设置完毕后打开数据视图向其中输入数据,如图3所示。

图3录入数据

 

2.分析数据文件

数据录入完毕后,如图4所示,依次点击分析,一般线性模型,将反应产率设置为因变量,将温度和压力设置为固定因子,然后点击模型,在弹出的窗口中,选择全因子。

图4多因素相关分析(一)

 

在同一界面,点击图5所示的事后比较按钮,在弹出的窗口中将温度和压力添加至下列各项的事后检验,然后在假定等方差中选择邓肯方法,点击继续。然后点击EM平均值按钮,在弹出的窗口中,将(OVERALL)添加至显示下列各项的平均值。点击继续,然后点击确定,SPSS进行分析并将结果输出。

图5多因素相关分析(二)

 

3.结果解读

图6分析结果

 

在主体间因子表格中,显示了每个因子对应的个案数。

我们需关注第二个表格主体间效应检验,对于温度,压力,温度*压力,三个源,其显著性均为0.000,显著性小于0.05,证明温度,压力,温度*压力均对反应产率影响效果显著。在后续的实验中,温度和压力这两个条件均需要细致的进行研究。

通过多因素相关性分析,我们可以了解自变量(因子)对因变量的影响程度,从而及时调整方案,节省不必要的实验成本,获取更改的效益。想学习更多的SPSS使用方法,大家可以登录SPSS中文网站进行学习。

 

作者:莱阳黎曼

展开阅读全文

标签:多因素方差分析SPSS教程

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31
spss方差齐性检验如何操作 spss方差齐性检验怎么看方差齐不齐
方差的大小代表了数据分布的离散程度,方差大,数据分布越分散,方差小,数据分布越集中。组间数据分布离散程度差别较大时,是不能进行比较的,此时不能确定两组数据的差异来源于组间还是组内,因此方差齐性检验是进行组间数据比较的基础。关于SPSS方差齐性检验如何操作,SPSS方差齐性检验怎么看方差齐不齐,本文借助实例,向大家作简单介绍。
2023-10-25
spss线性回归图怎么做 spss线性回归图怎么看结果
借助回归分析,我们可以了解到两组变量是否存在具有统计学意义的依赖关系,描述这种依赖关系的方程是什么,方程可以在多大程度上解释因变量的变化。使用SPSS,不仅可以简便的完成回归分析,还可以为变量绘制散点图,便于大家直观的了解变量间关系。关于SPSS线性回归图怎么做,SPSS线性回归图怎么看结果,本文借助实例,向大家做简单的介绍。
2023-10-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: